›› 2015, Vol. 36 ›› Issue (2): 569-575.doi: 10.16285/j.rsm.2015.02.037

• 数值分析 • 上一篇    下一篇

深部大采高沿空留巷围岩结构沉降破坏与控制

谢生荣1,许 磊2,张广超1,李世俊1,龚 爽1,杨绿刚3   

  1. 1.中国矿业大学(北京) 资源与安全工程学院,北京 100083;2.河南理工大学 土木工程学院,河南 焦作 454000; 3.冀中能源股份有限公司,河北 邢台 054001
  • 收稿日期:2014-02-20 出版日期:2015-02-11 发布日期:2018-06-13
  • 通讯作者: 许磊,男,1980年生,博士,主要从事巷道支护相关的研究工作。E-mail:32246714@qq.com E-mail:xsrxcq@163.com
  • 作者简介:谢生荣,男,1981年,博士,讲师,主要从事矿井灾害防治方面的研究工作
  • 基金资助:

    国家自然科学基金资助项目(No. 51234005);中央高校基本科研业务费专项资金资助(No. 2010QZ06);河南理工大学博士基金(No.B2015-70)。

Subsidence broken of deep gob-side entry retaining surrounding rock structure with large mining height and its control

XIE Sheng-rong1, XU Lei2, ZHANG Guang-chao1, LI Shi-jun1, GONG Shuang1, YANG Lü-gang3   

  1. 1. Faculty of Resource & Safety Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; 2. School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; 3. Jizhong Energy Group Co., Ltd., Xingtai, Hebei 054001, China
  • Received:2014-02-20 Online:2015-02-11 Published:2018-06-13

摘要: 为了解决深部沿空留巷围岩控制难题,选取邢东矿(埋深850 m)1126大采高工作面沿空留巷为研究对象。采用UDEC模拟分析关键块B不同下沉量围岩的响应特征。结果表明:①实体煤帮偏应力峰值和位置与关键块B下沉量呈线性关系增大且向深部转移;②实体煤帮深部变形对关键块B下沉量的响应较弱,愈靠近煤帮表面其敏感性越强,深浅部围岩位移有明显拐点;③顶板下沉量、帮变形量与关键块B下沉量呈正指数关系;④随关键块B下沉,实体煤帮的破坏形式经历了从不稳定三角块滑落→X共轭破坏→双X共轭破坏过程。认为:①巷旁采空区充填可有效限制关键块C下沉对块体B的带动作用;②钢管混凝土支架可适应关键块B的下沉特征,具有较强的抗压缩和弯曲特性;③高性能、高预紧力锚杆可更好地提高锚固体承载和抵御变形能力;④顶桁架锚索可以锚固在关键块B上,锚固基础稳固可靠;帮锚索可以穿越帮潜在滑移面,锚固在位移拐点内的锚固区内,限制帮结构性滑移。基于此提出了巷旁采空区充填+钢管混凝土支架+顶桁架、帮锚索+高强高预紧力锚杆联合控制方案;沿空留巷完成30 d后围岩趋于稳定,顶底板和两帮最大相对移近量分别为613 mm和374 mm,实现了深部大采高沿空留巷围岩的有效控制。

关键词: 关键块, 煤帮响应特征, 偏应力分布, 钢管混凝土支架

Abstract: In order to solve the surrounding rock control problems in deep gob-side entry retaining, the working face 1126 with large mining height of Xingdong mine (850 m occurrence depth) was taken as research subject. Then, by means of UDEC simulation, we analyze surrounding rock response character with different subsidence amounts of key block B. Analysis result shows that: ①the deviatoric stress peak value of coal sides and its position have linear relationship with subsidence amount of key block B, and they transfer to deep part; ②deformation in deep part of coal sides has weak response to subsidence amount of key block B, and the closer to coal side surface, the more sensibility the coal sides has, therefore, there is an obvious inflection between the deep and shallow surrounding rock displacement; ③the roof subsidence amount and sides deformation amount have positive exponential relationship with the subsidence of key block B; ④along with key block B settling, broken form of coal sides experiences the following progress: unstable triangular block slide →X conjugate broken →double X conjugate broken. Therefore, some conclusions are made as follows: ①the roadside gob backfilling in can effectively limit the driving effect from key block C to block B; ②steel-concrete support can adapt subsidence feature of key block B well and has strong compression resistance and bending character; ③the high performance and high pre-stressed anchor can better improve the load capacity and deformation resistance ability of anchoring body; ④the roof truss anchor cable can be anchored in key block B that has solid and reliable anchoring basis, and, side cable can be anchored the area within the displacement inflection by passing through potential slip surface in order to restrict the side structural slip. Based on the above analysis, a collaborative control program was put forward which consists of roadside gob backfilling, steel-concrete support, roof truss anchor cable, side cable and high strength and high pre-stressed anchor. Thirty days after the entry retained, surrounding rock deformation tends to be stable. In addition, the relative displacement amount of roof and floor is 613 mm, and the other one of two sides is 374 mm, which achieves the effective control of gob-side retaining entry surrounding rock in deep mining with large mining height.

Key words: key block, coal sides response feature, deviatoric stress distribution, steel-concrete support

中图分类号: 

  • TU 45
[1] 张瑞新 ,李泽荃 ,赵红泽 ,杨 曌 ,白玉奇,. 节理岩体关键块体稳定的概率分析[J]. , 2014, 35(5): 1399-1405.
[2] 冯 振 ,殷跃平 ,李 滨 ,张 明 . 重庆武隆鸡尾山滑坡视向滑动机制分析[J]. , 2012, 33(9): 2704-2713.
[3] 石 露,李小春,白 冰. 基于自由面上环路对应节理无限切割的关键块体搜索[J]. , 2012, 33(7): 2196-2202.
[4] 李迎富,华心祝. 沿空留巷上覆岩层关键块稳定性力学分析及巷旁充填体宽度确定[J]. , 2012, 33(4): 1134-1140.
[5] 朱泽奇,盛 谦,冷先伦,朱付广. 大型地下洞室群关键块体地震响应分析[J]. , 2010, 31(S2): 254-259.
[6] 刘泉声,卢兴利. 煤矿深部巷道破裂围岩非线性大变形及支护对策研究[J]. , 2010, 31(10): 3273-3279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[2] 万 智,董 辉,刘宝琛. 基于正交设计下SVM滑坡变形时序回归预测的超参数选择[J]. , 2010, 31(2): 503 -508 .
[3] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[4] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[5] 胡勇刚,罗 强,张 良,黄 晶,陈亚美. 基于离心模型试验的水泥土搅拌法加固斜坡软弱土地基变形特性分析[J]. , 2010, 31(7): 2207 -2213 .
[6] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[7] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[8] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .
[9] 胡海军,蒋明镜,赵 涛,彭建兵,李 红. 制样方法对重塑黄土单轴抗拉强度影响的初探[J]. , 2009, 30(S2): 196 -199 .
[10] 李 敏,柴寿喜,王晓燕,魏 丽. 以强度增长率评价麦秸秆加筋盐渍土的加筋效果[J]. , 2011, 32(4): 1051 -1056 .