›› 2015, Vol. 36 ›› Issue (5): 1363-1367.doi: 10.16285/j.rsm.2015.05.018
曹兆虎1, 2,孔纲强1, 2,周 航1, 2,耿之周3
CAO Zhao-hu1, 2, KONG Gang-qiang1, 2, ZHOU Hang1, 2, GENG Zhi-zhou3
摘要: 楔形桩是一种可以有效提高桩侧摩阻力的纵向变截面异形桩,然而针对该变截面桩沉桩效应特性方面的研究却相对较少。基于透明土材料和粒子图像测速技术(简称PIV),开展静压楔形桩沉桩模型试验,测得沉桩过程中桩周土体的位移场变化规律;沉桩过程中桩周土体位移场由激光射入透明土材料,与透明土材料之间的相互作用产生的独特散斑场,通过CCD(charge-coupled device)电荷耦合元件相机成像处理而获得。同时进行了等截面桩的沉桩模型试验,并对等混凝土材料用量情况下楔形桩和等截面桩的沉桩效应进行对比分析。最后,将此试验结果与基于常规试验手段的静压楔形桩沉桩模型试验和圆孔扩张理论计算结果进行对比分析,验证了基于透明土材料的静压楔形桩沉桩模型试验的准确性和可靠性。研究结果表明,基于透明土材料和PIV技术可以有效地开展静压楔形桩沉桩模型试验研究;楔形桩静压施工过程中对桩周土的影响范围约为等混凝土用量等截面桩的1.2倍。
中图分类号:
[1] | 宋义敏, 张 悦, 许海亮, 王亚飞, 贺志杰. 基于非均匀特征的岩石蠕滑与黏滑变形演化研究[J]. 岩土力学, 2020, 41(2): 363-371. |
[2] | 王国辉, 陈文化, 聂庆科, 陈军红, 范晖红, 张川, . 深厚淤泥质土中基坑开挖对基桩 影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407. |
[3] | 陈贺, 张玉芳, 张新民, 魏少伟, . 高压注浆钢花管微型桩抗滑特性 足尺模型试验研究[J]. 岩土力学, 2020, 41(2): 428-436. |
[4] | 雷华阳, 胡垚, 雷尚华, 祁子洋, 许英刚, . 增压式真空预压加固吹填超软土微观结构特征分析[J]. 岩土力学, 2019, 40(S1): 32-40. |
[5] | 于一帆, 王平, 王会娟, 许书雅, 郭海涛, . 堆积层滑坡地震动力响应的物理模型试验[J]. 岩土力学, 2019, 40(S1): 172-180. |
[6] | 王东坡, 陈政, 何思明, 陈克坚, 刘发明, 李明清, . 泥石流冲击桥墩动力相互作用物理模型试验[J]. 岩土力学, 2019, 40(9): 3363-3372. |
[7] | 陈宇龙, 内村太郎, . 基于弹性波波速的降雨型滑坡预警系统[J]. 岩土力学, 2019, 40(9): 3373-3386. |
[8] | 王钦科, 马建林, 陈文龙, 杨彦鑫, 胡中波, . 上覆土嵌岩扩底桩抗拔承载特性离心 模型试验及计算方法研究[J]. 岩土力学, 2019, 40(9): 3405-3415. |
[9] | 卢谅, 石通辉, 杨东, . 置换减载与加筋复合处理方法对路基不 均匀沉降控制效果研究[J]. 岩土力学, 2019, 40(9): 3474-3482. |
[10] | 杨文波, 邹涛, 涂玖林, 谷笑旭, 刘雨辰, 晏启祥, 何川. 高速列车振动荷载作用下马蹄形断面隧 道动力响应特性分析[J]. 岩土力学, 2019, 40(9): 3635-3644. |
[11] | 蔡雨, 徐林荣, 周德泉, 邓超, 冯晨曦, . 自平衡与传统静载试桩法模型试验研究[J]. 岩土力学, 2019, 40(8): 3011-3018. |
[12] | 孙飞, 张志强, 易志伟. 正断层黏滑错动对地铁隧道结构影响 的模型试验研究[J]. 岩土力学, 2019, 40(8): 3037-3044. |
[13] | 詹良通, 胡英涛, 刘小川, 陈捷, 王瀚霖, 朱斌, 陈云敏. 非饱和黄土地基降雨入渗离心模型试验 及多物理量联合监测[J]. 岩土力学, 2019, 40(7): 2478-2486. |
[14] | 周东, 刘汉龙, 仉文岗, 丁选明, 杨昌友, . 被动桩侧土体位移场的透明土模型试验[J]. 岩土力学, 2019, 40(7): 2686-2694. |
[15] | 赵晓彦, 范宇飞, 刘亮, 蒋楚生, . 铁路台阶式加筋土挡墙潜在破裂面特征模型试验[J]. 岩土力学, 2019, 40(6): 2108-2118. |
|