›› 2015, Vol. 36 ›› Issue (S1): 341-345.doi: 10.16285/j.rsm.2015.S1.058
吕 特1, 2,张 洁1, 2,薛建峰3,黄宏伟1, 2,于永堂4
LÜ Te1, 2, ZHANG Jie1, 2, XUE Jian-feng3, HUANG Hong-wei1, 2, YU Yong-tang4
摘要: 格林-安姆普特(Green-Ampt)模型原理简单、使用方便,在浅层滑坡的降雨入渗分析中有很大的应用潜力。渗透系数是Green-Ampt模型中的一个主要参数,该渗透系数并不一定等于土体的饱和渗透系数。通过与理查茲(Richards)方程求解进行比较,研究了Green-Ampt模型中渗透系数的取值方法。研究发现,为获得与Richards方程相同的入渗量计算结果,需对饱和渗透系数进行修正,该修正系数的大小与入渗深度和土体类型有关。对于文中研究的土体,当Green-Ampt模型中渗透系数取为0.7倍饱和渗透系数时,由Green-Ampt模型计算的孔隙水压力分布与Richards方程计算结果最为接近,建议Green-Ampt模型中渗透系数修正系数取0.7。
中图分类号:
[1] | 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398. |
[2] | 李红坡, 陈征, 冯健雪, 蒙宇涵, 梅国雄, . 双层地基水平排水砂垫层位置优化研究[J]. 岩土力学, 2020, 41(2): 437-444. |
[3] | 彭家奕, 张家发, 沈振中, 叶加兵, . 颗粒形状对粗粒土孔隙特征和渗透性的影响[J]. 岩土力学, 2020, 41(2): 592-600. |
[4] | 王刚, 韦林邑, 魏星, 张建民, . 压实黏土三轴压缩变形过程中的渗透性变化规律[J]. 岩土力学, 2020, 41(1): 32-38. |
[5] | 刘丽, 吴羊, 陈立宏, 刘建坤, . 基于数值模拟的湿润锋前进法测量精度分析[J]. 岩土力学, 2019, 40(S1): 341-349. |
[6] | 徐浩青, 周爱兆, 姜朋明, 刘顺青, 宋苗苗, 陈亮, . 不同砂−膨润土垂直防渗墙填筑土料的掺量研究[J]. 岩土力学, 2019, 40(S1): 424-430. |
[7] | 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541. |
[8] | 朱彦鹏, 杜晓启, 杨校辉, 栗慧王君, . 挤密桩处理大厚度自重湿陷性黄土地区综合 管廊地基及其工后浸水试验研究[J]. 岩土力学, 2019, 40(8): 2914-2924. |
[9] | 胡明鉴, 崔 翔, 王新志, 刘海峰, 杜 韦, . 细颗粒对钙质砂渗透性的影响试验研究[J]. 岩土力学, 2019, 40(8): 2925-2930. |
[10] | 李 贤, 汪时机, 何丙辉, 沈泰宇, . 土体适用MICP技术的渗透特性条件研究[J]. 岩土力学, 2019, 40(8): 2956-2964. |
[11] | 范日东, 刘松玉, 杜延军, . 基于改进滤失试验的重金属污染 膨润土渗透特性试验研究[J]. 岩土力学, 2019, 40(8): 2989-2996. |
[12] | 詹良通, 胡英涛, 刘小川, 陈捷, 王瀚霖, 朱斌, 陈云敏. 非饱和黄土地基降雨入渗离心模型试验 及多物理量联合监测[J]. 岩土力学, 2019, 40(7): 2478-2486. |
[13] | 余良贵, 周建, 温晓贵, 徐杰, 罗凌晖, . 利用HCA研究黏土渗透系数的标准探索[J]. 岩土力学, 2019, 40(6): 2293-2302. |
[14] | 陶高梁, 吴小康, 甘世朝, 肖衡林, 马 强, 罗晨晨, . 不同初始孔隙比下非饱和黏土渗透性 试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770. |
[15] | 张 昭, 程靖轩, 刘奉银, 齐吉琳, 柴军瑞, 李会勇, . 基于土颗粒级配预测非饱和 渗透系数函数的物理方法[J]. 岩土力学, 2019, 40(2): 549-560. |
|