›› 2016, Vol. 37 ›› Issue (4): 1049-1060.doi: 10.16285/j.rsm.2016.04.018

• 岩土工程研究 • 上一篇    下一篇

工程切坡诱发黄土滑坡成因机制研究

曹春山1, 2,吴树仁2,潘 懋1,梁昌玉2   

  1. 1. 北京大学 地球与空间科学学院,北京 100871;2. 中国地质科学院地质力学研究所,北京 100081
  • 收稿日期:2015-12-22 出版日期:2016-04-11 发布日期:2018-06-09
  • 通讯作者: 梁昌玉,1987年生,女,博士,主要从事工程黄土边坡变形破坏机理方面的研究工作。E-mail: mechliangchy@gmail.com E-mail:1301110492@pku.edu.cn
  • 作者简介:曹春山,男,1977年生,博士,主要从事地质灾害防治方面的研究工作
  • 基金资助:

    科技部十二五科技支撑课题(No. 2012BAK10B02)。

Mechanism research on artificial slope cutting-induced loess landslide

CAO Chun-shan1, 2,WU Shu-ren2,PAN Mao1,LIANG Chang-yu2   

  1. 1. School of Earth and Space Sciences, Peking University, Beijing 100871, China; 2. Institute of Geomechanics,Chinese Academy of Geological Sciences, Beijing 100081, China
  • Received:2015-12-22 Online:2016-04-11 Published:2018-06-09
  • Supported by:

    This work was supported by the Supporting Program of the“Twelve Five-year Plan”for Sci & Tech Research of China( 2012BAK10B02).

摘要: 伴随着城镇化进程的提速,黄土地区由于工程切坡诱发了大量的工程滑坡。为了研究典型工程黄土滑坡的成因机制,以宝鸡市扶风县飞凤山滑坡为例,开展了野外地质灾害详细调查,同时进行原位渗水试验和原状黄土、古土壤试样土-水特征曲线测试。试验结果表明:当黄土存在小孔洞等结构性问题时,渗透系数可达10-4 cm/s量级,为中等渗透性等级;土-水特征曲线试验求得古土壤的进气值为11.5 kPa,大于黄土的9.0 kPa,同时曲线也显示了古土壤和黄土干湿交替过程中,强度和变形的演化出现分化。在试验结果分析基础上,指出工程切坡是滑坡发生的主要诱发因素,由此触发了土体一系列物理化学链锁反应,尤其是强化了土-水耦合作用的影响,催化了滑坡的发生。最后,提出了飞凤山滑坡的破坏模式为滑带双向发展、兼具滑塌灾害部分典型地质特征的渐进式破坏。

关键词: 黄土滑坡, 工程切坡, 原位渗水试验, 土-水特征曲线, 吸力

Abstract: Along with the acceleration of urbanization process, a large number of engineering landslides are induced by artificial slope cutting in loess region. Feifengshan landslide has been selected as a typical case in order to study the mechanism of typical engineering landslide. Detailed field investigation has been done, meanwhile, in-situ water penetration test and soil water characteristic curve (SWCC) test on undisturbed loess and paleosol have been conducted in this study. The experimental results show that: The permeability coefficient of loess can reach medium grade about 10-4 cm/s, if loess has structural problems, such as small holes, cracks, and so on. The air entry value of paleosol is 11.5 kPa obtained by SWCC tests , which is higher than that of loess (9.0 kPa); at the same time, curve also indicates that the evolutions of strength and deformation of paleosol and loess will differentiate dry-wet cycle. With the increase of suction, the growth rate of shear strength of paleosol is lower than that of loess during drying phase, and the elastic volume shrinkage rate of paleosol, caused by compressing, is also lower than that of loess in the same process. Paleosol will have bigger expansion deformation than loess during wetting phase, because the clay content of paleosol is higher. On the basis of experimental results analysis and field investigation, it is founded that artificial slope cutting is the most important factor inducing Feifengshan landslide, which triggers a series of physical and chemical chain reactions, especially reinforces coupling effect between soil and water and accelerates the occurrence of landslide. Finally, we put forward the failure mode of Feifengshan landslide characterized by two-way development of sliding surface and typical progressive destruction, simultaneously having part of geological features of slumping.

Key words: loess landslide, artificial slope cutting, in-situ permeation test, soil water characteristic curve (SWCC), suction

中图分类号: 

  • TU 42

[1] 郑方, 邵生俊, 佘芳涛, 袁浩, . 重塑黄土在不同基质吸力下的真三轴剪切试验[J]. 岩土力学, 2020, 41(S1): 156-162.
[2] 谌文武, 贾全全, 童艳梅. 莫高窟壁画地仗土-水特征曲线的测定与拟合[J]. 岩土力学, 2020, 41(5): 1483-1491.
[3] 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122.
[4] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
[5] 方瑾瑾, 冯以鑫, 余永强, 李震, 林志斌, . 真三轴条件下的原状黄土增湿变形特性[J]. 岩土力学, 2020, 41(4): 1235-1246.
[6] 陈仁朋, 王朋飞, 刘鹏, 程威, 康馨, 杨微, . 路基煤矸石填料土-水特征曲线试验研究[J]. 岩土力学, 2020, 41(2): 372-378.
[7] 王立业, 周凤玺, 秦虎, . 饱和盐渍土分数阶蠕变模型及试验研究[J]. 岩土力学, 2020, 41(2): 543-551.
[8] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[9] 戴国亮, 朱文波, 郭晶, 龚维明, 赵学亮, . 软黏土中吸力式沉箱基础竖向抗拔承载 特性试验研究[J]. 岩土力学, 2019, 40(S1): 119-126.
[10] 王欢, 陈群, 王红鑫, 张文举, . 不同压实度和基质吸力的粉煤灰三轴试验研究[J]. 岩土力学, 2019, 40(S1): 224-230.
[11] 洪本根, 罗嗣海, 胡世丽, 王观石, 姚康, . 基质吸力对非饱和离子型稀土抗剪强度的影响[J]. 岩土力学, 2019, 40(6): 2303-2310.
[12] 李书兆, 王忠畅, 贾 旭, 贺林林, . 软黏土中张紧式吸力锚循环承载力简化计算方法[J]. 岩土力学, 2019, 40(5): 1704-1712.
[13] 陶高梁, 吴小康, 甘世朝, 肖衡林, 马 强, 罗晨晨, . 不同初始孔隙比下非饱和黏土渗透性 试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770.
[14] 王娟娟, 郝延周, 王铁行. 非饱和压实黄土结构特性试验研究[J]. 岩土力学, 2019, 40(4): 1351-1357.
[15] 郑国锋, 郭晓霞, 邵龙潭, . 基于状态曲面的非饱和土强度准则及其验证[J]. 岩土力学, 2019, 40(4): 1441-1448.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!