›› 2018, Vol. 39 ›› Issue (5): 1789-1795.doi: 10.16285/j.rsm.2016.1243
李凯达1,胡少斌2,李小春2,伍 键1,樊清怡1,伍海清2
LI Kai-da1, HU Shao-bin2, LI Xiao-chun2, WU Jian1, FAN Qing-yi1, WU Hai-qing2
摘要: 在CO2地质封存过程中,CO2注入深部岩层,引起地层孔隙流体组分和压力的改变,影响岩层的力学稳定性,可能导致储盖层破裂、地表隆起,并引发中小规模地震等不良后果。以砂岩为试验研究对象,以CO2、N2、H2O作为孔隙流体介质,通过控制和调节流体的温度和孔隙压力,开展了单相流体作用下岩石三轴压缩力学特性对比试验,分析了单相流体耦合作用下岩石强度、弹性模量和泊松比等基本力学参数。研究发现,高压孔隙流体使干燥砂岩的峰值强度和弹性模量均出现不同程度降低,泊松比却有较为明显的升高现象,且影响作用从大到小依次为H2O、CO2、N2。孔隙流体降低了干燥砂岩的脆性,并增强了塑性变形,且含水砂岩塑性最强。孔隙流体对砂岩力学特性影响程度取决于流体与岩石矿物成分的相互作用强弱,分析认为砂岩中不同矿物成分对CO2、N2、H2O的选择性吸附导致孔隙流体对砂岩强度影响差异明显,且作用效应从大到小依次为H2O、CO2、N2。
中图分类号:
TU 452
[1] | 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105. |
[2] | 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188. |
[3] | 赵怡晴, 吴常贵, 金爱兵, 孙浩, . 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240. |
[4] | 韩超, 庞德朋, 李德建. 砂岩分级加卸载蠕变试验过程能量演化分析[J]. 岩土力学, 2020, 41(4): 1179-1188. |
[5] | 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218. |
[6] | 李斌, 黄 达, 马文著, . 层理面特性对砂岩断裂力学行为的影响研究[J]. 岩土力学, 2020, 41(3): 858-868. |
[7] | 张宗堂, 高文华, 张志敏, 唐骁宇, 邬俊, . 基于Weibull分布的红砂岩颗粒崩解破碎演化规律[J]. 岩土力学, 2020, 41(3): 877-885. |
[8] | 杨福见, 胡大伟, 田振保, 周辉, 卢景景, 罗宇杰, 桂树强, . 高静水压力压实作用下疏松砂岩渗透 特性演化及其机制[J]. 岩土力学, 2020, 41(1): 67-77. |
[9] | 刘波, 马永君, 盛海龙, 常雅儒, 于俊杰, 贾帅龙, . 白垩系红砂岩冻结融化后的力学性质试验研究[J]. 岩土力学, 2019, 40(S1): 161-171. |
[10] | 丁长栋, 张杨, 杨向同, 胡大伟, 周辉, 卢景景, . 致密砂岩高围压和高孔隙水压下渗透率 演化规律及微观机制[J]. 岩土力学, 2019, 40(9): 3300-3308. |
[11] | 赵波, 张广清, 唐梅荣, 庄建满, 林灿坤, . 长期注水对致密砂岩油藏岩石力学 性质影响机制研究[J]. 岩土力学, 2019, 40(9): 3344-3350. |
[12] | 张强, 李小春, 周英博, 石露, 白冰, . 高压孔隙CO2/水作用下完整四川三叠系 砂岩剪切特性的试验研究[J]. 岩土力学, 2019, 40(8): 3028-3036. |
[13] | 宫凤强, 伍武星, 李天斌, 司雪峰, . 深部硬岩矩形隧洞围岩板裂破坏的试验模拟研究[J]. 岩土力学, 2019, 40(6): 2085-2098. |
[14] | 罗丹旎, 苏国韶, 何保煜, . 不同饱水度花岗岩的真三轴岩爆试验研究[J]. 岩土力学, 2019, 40(4): 1331-1340. |
[15] | 周 辉, 程广坦, 朱 勇, 陈 珺, 卢景景, 崔国建, 杨聘卿, . 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860. |
|