›› 2018, Vol. 39 ›› Issue (3): 1115-1122.doi: 10.16285/j.rsm.2016.1276

• 测试技术 • 上一篇    下一篇

岩石多功能剪切试验测试系统研制

周 辉1, 2,陈 珺1, 2,卢景景1, 2,张传庆1, 2,胡大伟1, 2,孟凡震3,姜 玥1, 2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点试验室,湖北 武汉 430071; 2. 中国科学院大学,北京 100049;3. 青岛理工大学 理学院,山东 青岛 266033
  • 收稿日期:2016-06-02 出版日期:2018-03-12 发布日期:2018-06-06
  • 作者简介:周辉,男,1972年生,博士,研究员,博士生导师,主要从事岩石力学试验、理论、数值分析与工程安全性分析方面的研究工作。
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2014CB046902);国家自然科学基金项目(No.51427803,No.51404240,No.51409102);中国科学院科研仪器设备研制项目资助(No.YZ201553,No.YZ201344);中国科学院“百人计划”。

Development of a multi-functional shear test system for rock

ZHOU Hui1, 2, CHEN Jun1, 2, LU Jing-jing1, 2, ZHANG Chuan-qing1, 2, HU Da-wei1, 2, MENG Fan-zhen3, JIANG Yue1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Faculty of Science, Qingdao Technological University, Qingdao, Shandong 266033, China
  • Received:2016-06-02 Online:2018-03-12 Published:2018-06-06
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2014CB046902), the National Natural Science Foundation of China (NSFC) (51427803, 51404240, 51409102), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (YZ201553, YZ201344), and “100 Talent Program” of the Chinese Academy of Sciences.

摘要: 详细介绍了所研制的岩石多功能剪切试验测试系统的主要功能、技术指标和仪器组成,并开展了一系列相关力学试验。该试验测试系统主要包括试验装置、测量系统和控制系统3部分,最大法向拉伸应力为40 MPa,最大法向压缩应力为120 MPa,最大水平剪切应力为120 MPa,试样尺寸为50 mm?50 mm?50 mm;可开展多种力学试验,包括直接拉伸试验、直接剪切试验、拉伸-剪切试验和压缩–剪切试验。利用该试验测试系统对花岗岩进行试验研究,研究结果表明:直接拉伸试验中,试样发生脆性破坏,声发射信号瞬间达到峰值,破坏断面表现出拉伸破坏特征;直接剪切试验中,试样发生多次破坏,破坏瞬间声发射信号均发生突增,破坏断面表现出剪切破坏特征;拉伸-剪切试验中,试样在拉应力作用下剪切强度显著降低,声发射信号在破坏阶段表现强烈,破坏断面既有拉伸破坏特征也有一定的剪切破坏特征。上述力学试验结果,表明了所研制的岩石多功能剪切试验测试系统能够开展多种力学试验,为进一步研究岩石的剪切力学特性提供新的测试手段。

关键词: 岩石力学, 剪切试验, 拉剪试验, 测试系统, 声发射

Abstract: This study introduces the main function, technical index and instrument composition of a developed rock multi-functional shear test system in detail. A series of mechanical experiments is carried out by using the testing system. This system mainly consists of three parts: testing device, measurement system and control system. The maximum normal tensile stress is 40 MPa, and both the maximum normal compressive stress and horizontal shearing stress are 120 MPa. The specimen size is 50 mm?50 mm?50 mm. Multiple mechanical experiments are conducted on granite, including direct tension test, direct shear test, tension-shear test and compression-shear test. The results show that brittle fracture of the specimen occurrs in the direct tensile tests. The acoustic emission (AE) signal instantly reaches the peak and the fracture surface exhibits the characteristics of tensile fracture. In the direct shear test, the specimen is destroyed many times. The AE signal suddenly increases at the moment of destruction, and the fracture surface shows the characteristics of shear fracture. In the tension-shear test, the shear strength of the specimen decreases significantly under the tensile stress. The AE signal is obvious at the failure stage, and the fracture surface exhibited both tensile and shear fracture characteristics. The results of the above mechanical experiments indicate that the developed multi-functional shear test system can successfully carry out a variety of mechanical experiments and provide a new testing method to further study shearing properties of rocks.

Key words: rock mechanics, shear test, tension-shear test, test system, acoustic emission

中图分类号: 

  • TU 452

[1] 王创业, 常新科, 刘沂琳, 郭文彬, . 单轴压缩条件下大理岩破裂过程声发射频谱 演化特征实验研究[J]. 岩土力学, 2020, 41(S1): 51-62.
[2] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[3] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[4] 甘一雄, 吴顺川, 任义, 张光, . 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332.
[5] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[6] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[7] 金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939-951.
[8] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[9] 闫超萍, 龙志林, 周益春, 旷杜敏, 陈佳敏, . 钙质砂剪切特性的围压效应和粒径效应研究[J]. 岩土力学, 2020, 41(2): 581-591.
[10] 张艳博, 孙林, 姚旭龙, 梁鹏, 田宝柱, 刘祥鑫, . 花岗岩破裂过程声发射关键信号时 频特征试验研究[J]. 岩土力学, 2020, 41(1): 157-165.
[11] 郑坤, 孟庆山, 汪稔, 余克服, . 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 2020, 41(1): 205-213.
[12] 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72.
[13] 何鹏飞, 马巍, 穆彦虎, 黄永庭, 董建华, . 黄土−砂浆块界面剪切特性试验及本构模型研究[J]. 岩土力学, 2019, 40(S1): 82-90.
[14] 楼烨, 张广清. 压裂液黏度对循环水力压裂影响的试验研究[J]. 岩土力学, 2019, 40(S1): 109-118.
[15] 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!