›› 2018, Vol. 39 ›› Issue (6): 2249-2258.doi: 10.16285/j.rsm.2016.2026

• 数值分析 • 上一篇    下一篇

强风化软硬互层岩质高边坡监测与数值模拟

周 勇1, 2,王旭日1, 2,朱彦鹏1, 2,李京榜1, 2,蒋小奎3   

  1. 1. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室,甘肃 兰州 730050; 2. 兰州理工大学 西部土木工程防灾减灾教育部工程研究中心,甘肃 兰州 730050;3. 甘肃长达路业有限责任公司,甘肃 兰州 730030
  • 收稿日期:2016-08-25 出版日期:2018-06-11 发布日期:2018-07-03
  • 作者简介:周勇,男,1978年生,博士,教授,博士生导师,主要从事深基坑开挖支护和边坡加固方面的教学与研究工作
  • 基金资助:

    国家自然科学基金(No.51568042);教育部长江学者和创新团队发展计划(No.2013IRT13068)

Monitoring and numerical simulation of an interbedding high slope composed of soft and hard strong-weathered rock

ZHOU Yong1, 2, WANG Xu-ri1, 2, ZHU Yan-peng1, 2, LI Jing-bang1, 2, JIANG Xiao-kui3   

  1. 1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 3. Gansu Changda Highway Co., Ltd., Lanzhou, Gansu 730030, China
  • Received:2016-08-25 Online:2018-06-11 Published:2018-07-03
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51568042) and the Program for Changjiang Scholars and Innovative Research Team in University (2013IRT13068).

摘要: 强风化软硬互层岩质高边坡属岩质边坡特殊情况,其结构面组成及性质复杂,与支护结构相互作用的复杂程度较高,相互影响较大,顺倾结构面临空等情况下破坏可能性很大。以兰永一级公路某深挖路堑边坡的治理工程为依托,对边坡支护过程中及支护结束后的锚杆应力、锚索内力、坡体位移进行了原位监测,并利用岩土分析软件PLAXIS,采用节理岩模块对该边坡工程进行了数值模拟分析。监测及模拟结果表明:该边坡由节理裂隙与岩层面形成折线形潜在滑面,且具有相同滑动可能性的潜在滑面不止一个;支护结构穿透组成滑面折线的任何折线段部分均对结构面稳定有显著影响,但支护结构穿透泥岩面对结构面的影响较穿透节理裂隙更大;支护锚索预应力变化具有一定规律,预应力变化过程对坡体位移及支护结构内力具有一定影响;坡体的主动变形对支护结构内力的影响较坡体被动变形大,结构面产生滑动趋势对坡面位移影响的敏感程度较支护结构内力影响的敏感程度低。该边坡支护稳定,支护设计合理,可为同类边坡支护设计提供相应建议。

关键词: 互层岩质边坡, 潜在滑面, 坡体位移, 监测, 锚杆应力, 锚索锚固力

Abstract: The interbedding slope with soft and hard strong-weathered rock is a special high slope, and the composition and properties of its structural surfaces are complex. The complexity and mutual influence of the interaction between the slope and supporting structure are relatively high, and it is the most probable that the collapsible structure will be destroyed when exposed to air. Based on the engineering of a deep cutting slope of Lanyong highway, we conducted in-situ monitoring the anchor rod stress, inner anchor force, and the displacement of the slope during and after the support. Moreover, numerical analysis was performed on the joint rock module of geotechnical engineering using PLAXIS software. The monitoring and numerical results indicate that the potential polygonal sliding surface of rock slope is formed by joint fractures and rock layers, and there is more than one potential sliding surface with the same sliding possibility. The retaining structure has great influence on the stability of structure surface when it penetrates any part of the fold line of the slip surface, but the penetrating shale surface has a greater effect on the structural surface than penetrating fissures. The variation of prestressing force of supporting anchor cable has a certain regularity, and the process of prestressing variation has a certain effect on the displacement of the slope and internal force of retaining supporting structure. For internal forces of supporting structure, the influence of the active deformation of the slope is greater than the influence of passive deformation of the slope. However, for a sensitive degree, sliding effect of the structural surface on the displacement of slope surface is less than the influence of internal forces of supporting structure. The support of the slope is stable, and the supporting design is reasonable, which can provide corresponding advice for the design of similar supporting slopes.

Key words: interbedding rock slope, potential sliding surface, slope-mass slide displacement, monitoring, anchor bar stress, anchoring force of cable bolts

中图分类号: 

  • TU 753.8

[1] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[2] 侯公羽, 胡涛, 李子祥, 谢冰冰, 肖海林, 周天赐, . 基于分布式光纤技术的采动影响下覆岩 变形演化规律试验研究[J]. 岩土力学, 2020, 41(3): 970-979.
[3] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[4] 郑 帅, 姜谙男, 张峰瑞, 张勇, 申发义, 姜旭东、. 基于机器学习与可靠度算法的围岩动态分级方法 及其工程应用[J]. 岩土力学, 2019, 40(S1): 308-318.
[5] 李悄, 孟繁增, 牛远志. 压重顶进框构下穿高铁引起桥墩变形及控制技术[J]. 岩土力学, 2019, 40(9): 3618-3624.
[6] 陈炳瑞, 吴昊, 池秀文, 刘辉, 伍梦蝶, 晏俊伟, . 基于STA/LTA岩石破裂微震信号实时识 别算法及工程应用[J]. 岩土力学, 2019, 40(9): 3689-3696.
[7] 李桐, 冯夏庭, 王睿, 肖亚勋, 王勇, 丰光亮, 姚志宾, 牛文静, . 深埋隧道岩爆位置偏转及其微震活动特征[J]. 岩土力学, 2019, 40(7): 2847-2854.
[8] 赵久彬, 刘元雪, 刘娜, 胡明, . 海量监测数据下分布式BP神经网络区域 滑坡空间预测方法[J]. 岩土力学, 2019, 40(7): 2866-2872.
[9] 杨杰, 马春辉, 程琳, 吕高, 李斌, . 高陡边坡变形及其对坝体安全稳定影响研究进展[J]. 岩土力学, 2019, 40(6): 2341-2353.
[10] 王剑锋, 李天斌, 马春驰, 张航, 韩瑀萱, 周雄华, 姜宇鹏, . 基于引力搜索法的隧道围岩微震定位研究[J]. 岩土力学, 2019, 40(11): 4421-4428.
[11] 侯公羽, 韩育琛, 谢冰冰, 魏广庆, 李子祥, 肖海林, 周天赐, . 定点式布设光纤在隧道结构健康监测中的 预拉应变损失研究 [J]. 岩土力学, 2019, 40(10): 4120-4128.
[12] 刘 勇, 冯 帅, 秦志萌. 基于运动角差的滑坡监测点相似性评判方法[J]. 岩土力学, 2019, 40(1): 288-296.
[13] 蒋 雄, 徐奴文, 周 钟, 侯东奇, 李 昂, 张 敏, . 两河口水电站母线洞开挖过程围岩破坏机制[J]. 岩土力学, 2019, 40(1): 305-314.
[14] 何海杰, 兰吉武, 高 武, 陈云敏, 马鹏程, 肖电坤, . 压缩空气排水井在填埋场滑移控制中的应用及分析[J]. 岩土力学, 2019, 40(1): 343-350.
[15] 董志宏, 丁秀丽, 黄书岭, 邬爱清, 陈胜宏, 周 钟, . 高地应力区大型洞室锚索时效受力特征 及长期承载风险分析[J]. 岩土力学, 2019, 40(1): 351-362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!