›› 2018, Vol. 39 ›› Issue (7): 2361-2370.doi: 10.16285/j.rsm.2016.2271

• 基础理论与实验研究 • 上一篇    下一篇

三轴应力下不同粒径破碎砂岩渗透特性试验

张天军1,尚宏波2,李树刚3,魏文伟1,包若羽3,潘红宇3   

  1. 1. 西安科技大学 理学院,陕西 西安 710054;2. 中煤科工集团西安研究院有限公司,陕西 西安 710054; 3. 西安科技大学 安全科学与工程学院,陕西 西安 710054
  • 收稿日期:2016-09-26 出版日期:2018-07-10 发布日期:2018-08-05
  • 通讯作者: 尚宏波,男,1991年生,硕士,助理工程师,主要从事矿井水害防治方面的研究工作。E-mail: shanghongbo@cctegxian.com E-mail:tianjun_zhang@126.com
  • 作者简介:张天军,男,1971年生,博士,教授,博士生导师,主要从事矿山灾害力学方向的教学与科研工作。
  • 基金资助:

    国家自然科学基金资助项目(No. 51774234,No. 51374168,No. 51474172);国家自然科学基金重点项目(No. 51734007)。

Permeability tests of fractured sandstone with different sizes of fragments under three-dimensional stress states

ZHANG Tian-jun1, SHANG Hong-bo2, LI Shu-gang3, WEI Wen-wei1, BAO Ruo-yu3, PAN Hong-yu3   

  1. 1. College of Sciences,Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China; 2. Xi’an Research Institute of China Coal Technology & Engineering Group Corp., Xi’an, Shaanxi 710054, China; 3. College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China
  • Received:2016-09-26 Online:2018-07-10 Published:2018-08-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51774234, 51374168, 51474172) and the Key Projects of the National Natural Science Foundation (51734007).

摘要: 地下工程中破碎岩体往往处于三向应力状态,此类岩体具有孔隙率大、渗透性高等特点,在地应力与高水头作用下易发生渗流失稳破坏,诱发突水灾害。为研究三轴应力下破碎砂岩的渗透特性,运用自主研发的破碎岩石三轴渗流试验系统,采用稳态渗透法进行5种粒径破碎砂岩的渗流试验,得到了三轴应力下破碎砂岩渗透特性变化规律,推导了有效应力与渗流速度之间的关系。试验结果表明:三轴应力下破碎砂岩的有效应力与渗流速度呈线性关系,且轴向位移越大时,随有效应力的增加渗流速度减小的幅度越小;三轴应力下5种粒径破碎砂岩的孔压梯度与渗流速度服从Forchheimer关系,两者之间的相关系数达0.95以上;轴向位移恒定时,随着围压的增大,破碎砂岩渗透率k减小,非Darcy流β因子增大,各级轴向位移下,破碎砂岩的渗透率与围压之间呈指数函数关系;随着孔隙率的减小,5种粒径的破碎砂岩渗透率呈减小趋势,非Darcy流β因子整体增大,且渗透率量级为10-14~10-11 m2,非Darcy流β因子的量级为106~1012 m-1。

关键词: 三轴应力, 破碎砂岩, 渗透特性, 有效应力, 围压, 孔隙率

Abstract: Fractured rocks in underground engineering are generally in the state of triaxial stress, which are characterised by large porosity and high permeability. Under the action of the ground stress and high-water head, it is most likely to result in the failure of seepage instability and induce the disaster of water inrush. In this study, a self-developed triaxial permeability testing system was employed to study the permeability characteristics of the fractured sandstone under different triaxial stress conditions. The permeability tests were carried out on fractured sandstone with five different sizes of fragments by the steady-state permeability method. Finally, the permeability variations of fractured sandstone under triaxial stress states were obtained, and the relationship between effective stress and seepage velocity was deduced. The result showed that the relationship between the effective stress and seepage velocity of fractured sandstone under triaxial stress was approximately linear. When the axial displacement increased, the decreasing amplitude of seepage velocity became smaller with the increase of the effective stress. The pore pressure gradients and the seepage velocities of fractured sandstone with five different diameters of fragments under triaxial stress conditions were coincidenet with the Forchheimer equation. Moreover, the correlation coefficient between these two was above 0.95. When the axial displacement was constant, the permeability k of fractured sandstone decreased and non-Darcy flow β factor increased with increasing confining pressure. Under various axial displacements, the relationship between the permeability and confining pressure of fractured sandstone presented an exponential function. With the decrease of porosity, the permeability of fractured sandstone with five different diameters of fragments exhibited a downward trend, whereas non-Darcy flow β factor increased as a whole. In addition, the magnitude of the permeability was from 10-14 to10-11 m2 and the magnitude of non-Darcy flow β factor was from 106 to 1012 m-1.

Key words: three-dimensional stress, broken sandstones, permeability characteristics, effective stress, confining pressure, porosity

中图分类号: 

  • TD 315

[1] 侯志强, 王宇, 刘冬桥, 李长洪, 刘昊. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(5): 1510-1520.
[2] 王刚, 秦相杰, 江成浩, 张振宇. 温度作用下CT三维重建煤体微观 结构的渗流和变形模拟[J]. 岩土力学, 2020, 41(5): 1750-1760.
[3] 李宗泽, 姜德义, 范金洋, 陈 结, 刘 伟, 吴 斐, 杜 超, 康燕飞. 盐岩三轴间隔疲劳特性试验研究[J]. 岩土力学, 2020, 41(4): 1305-1312.
[4] 刘华, 何江涛, 赵茜, 王铁行, 郭超翊, . 酸污染原状黄土渗透微观特征演变规律试验研究[J]. 岩土力学, 2020, 41(3): 765-772.
[5] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[6] 方瑾瑾, 冯以鑫, 王立平, 余永强, . 真三轴条件下非饱和黄土的有效应力屈服特性[J]. 岩土力学, 2020, 41(2): 492-500.
[7] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[8] 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654.
[9] 尹光志, 鲁俊, 张东明, 李铭辉, 邓博知, 刘 超, . 真三轴应力条件下钻孔围岩塑性区及增透半径研究[J]. 岩土力学, 2019, 40(S1): 1-10.
[10] 范运辉, 朱其志, 倪涛, 张坤, 张振南, . 基于弹性张量离散化的脆延转变本构模型研究[J]. 岩土力学, 2019, 40(S1): 181-188.
[11] 丁长栋, 张杨, 杨向同, 胡大伟, 周辉, 卢景景, . 致密砂岩高围压和高孔隙水压下渗透率 演化规律及微观机制[J]. 岩土力学, 2019, 40(9): 3300-3308.
[12] 王冲, 胡大伟, 任金明, 周辉, 卢景景, 刘传新, . 侵蚀性环境对地下结构渗透和力学特性影响研究[J]. 岩土力学, 2019, 40(9): 3457-3464.
[13] 吴爽爽, 胡新丽, 章涵, 周昌, 龚辉, . 嵌岩桩负摩阻力现场试验与计算方法研究[J]. 岩土力学, 2019, 40(9): 3610-3617.
[14] 毛小龙, 刘月田, 关文龙, 任兴南, 冯月丽, 丁祖鹏, . 一种适用于孔隙体积应变的有效应力方程[J]. 岩土力学, 2019, 40(8): 3004-3010.
[15] 王鹏飞, 谭文辉, 马学文, 李子建, 刘景军, 武洋帆, . 不同粗糙度和隙宽贯通充填裂隙 渗流特性试验研究[J]. 岩土力学, 2019, 40(8): 3062-3070.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!