›› 2018, Vol. 39 ›› Issue (8): 2795-2804.doi: 10.16285/j.rsm.2016.2527

• 基础理论与实验研究 • 上一篇    下一篇

动态扰动对应力松弛岩石变形行为影响的试验研究

李 帅,朱万成,牛雷雷,李如飞,李少华   

  1. 东北大学 资源与土木工程学院 岩石破裂与失稳研究所,辽宁 沈阳 110819
  • 收稿日期:2016-10-27 出版日期:2018-08-11 发布日期:2018-09-02
  • 通讯作者: 朱万成,男,1974年生,博士,教授,教育部长江学者特聘教授,博士生导师,主要从事岩石力学方面的教学与科研工作。 E-mail: zhuwancheng@mail.neu.edu.cn E-mail:li-82.28@163.com
  • 作者简介:李帅,男,1982年生,在站博士后,主要从事岩石流变力学方面的研究工作。
  • 基金资助:

    国家重点研发计划项目(No. 2016YFC0801607);国家自然科学基金资助项目(No. 51525402,No. 51761135102);中央高校基本科研业务费资助(No. N170108028,No. N170106003);中国博士后科学基金面上项目(2018M631810)。

Experimental study on influence of dynamic disturbance on deformation behavior of rock under stress relaxation

LI Shuai, ZHU Wan-cheng, NIU Lei-lei, LI Ru-fei, LI Shao-hua   

  1. Center for Rock Instability and Seismicity Research, School of Resource and Civil Engineering, Northeastern University, Shenyang, Liaoning 110819, China
  • Received:2016-10-27 Online:2018-08-11 Published:2018-09-02
  • Supported by:

    This work was supported by the National Key Research and Development Program of China (2016YFC0801607), the National Natural Science Foundation of China (51525402, 51761135102), the Fundamental Research Funds for the Central Universities of China (N170108028, N170106003) and the General Program of China Postdoctoral Science Foundation (2018M631810).

摘要: 利用自主研发的岩石松弛-扰动试验装置,测试了岩石加载、松弛、动态扰动和扰动后4个阶段的轴向应力、轴向应变和声发射响应,观察到了岩石试样在动态扰动后应变增加、应力降低的现象,砂岩试样的这种特征比花岗岩明显。初步分析认为,产生该现象的原因一方面由于松弛-扰动过程导致岩石内部出现不可逆的损伤,另一方面则是扰动去除后试样的残余变形。在初始压密和弹性阶段,砂岩试样的声发射撞击数少;在接近应变峰值阶段,撞击数骤增;在应力松弛阶段撞击数骤减;在动态扰动阶段,撞击数骤增。声发射是由于岩石损伤引起的,声发射数据反映了岩石的损伤是引起松弛试样在动态扰动后应变增加、应力降低的一个原因。另外,基于砂岩和花岗岩的准静态循环加、卸载试验,对砂岩、花岗岩在不同应变等级下的残余应变进行了定量化;砂岩的残余应变远高于花岗岩,这与砂岩试样在历经松弛-动态扰动后应变增加、应力降低较为明显的趋势相对应。同时,无论是松弛-动态扰动试验还是准静态循环加、卸载试验,岩石的残余变形都会随着卸荷初始应变的提高而增加。岩石的损伤与残余变形是密切相关的,两者的综合作用引起了动态扰动后岩石试样的应变增加、应力降低现象。

关键词: 岩石变形, 应力松弛, 动态扰动, 声发射, 残余变形

Abstract: The self-developed stress relaxation-dynamic disturbance test apparatus was used to measure the axial stress, axial strain and acoustic emission of rock subjected to loading and stress relaxation, dynamic disturbance. From the experimental results, it was found that the stress of rock specimen declined and its strain increased after the dynamic disturbance. In addition, the characteristics of sandstone were more obvious than that of granite. The preliminary study suggests that one reason for this phenomenon is likely related to the irreversible damage in the rock during the stress relaxation-disturbance process. Another reason is related to residual strain induced by the dynamic disturbance. During initial compaction and elastic phase, it is found that AE hits seldom occurs, while in the peak near the peak stress, AE hits instantly increases; during stress relaxation phase, the AE hits decrease, and it may increase instantly when triggered by dynamic loading. Clearly, the acoustic emission signal is induced by the damage evolution of rock, thus the AE data may reflect that the induced rock damage is one reason for the phenomenon of stress decline and strain increase. In addition, the quasi-static cycling loading and unloading test is conducted to quantify the residual strain of rock under the different loading levels. The residual strain in sandstone specimen is much larger than that in granite specimen, which corresponds well with the obvious phenomenon of stress decline and strain increase. In addition, the residual deformation increases with the rising initial unloading deformation both in stress relaxation-disturbance testing and quasi-static cycling loading and unloading test. Also, it should be mentioned that, the damage in rock is closely associated with residual strain, thus the both the rock and residual deformation may contribute to the phenomenon of stress decline and strain increase of rock specimen during stress relaxation-dynamic disturbance test of rock.

Key words: rock deformation, stress relaxation, dynamic disturbance, acoustic emission (AE), residual deformation

中图分类号: 

  • TU 452

[1] 王创业, 常新科, 刘沂琳, 郭文彬, . 单轴压缩条件下大理岩破裂过程声发射频谱 演化特征实验研究[J]. 岩土力学, 2020, 41(S1): 51-62.
[2] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[3] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[4] 甘一雄, 吴顺川, 任义, 张光, . 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332.
[5] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[6] 张艳博, 孙林, 姚旭龙, 梁鹏, 田宝柱, 刘祥鑫, . 花岗岩破裂过程声发射关键信号时 频特征试验研究[J]. 岩土力学, 2020, 41(1): 157-165.
[7] 郑坤, 孟庆山, 汪稔, 余克服, . 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 2020, 41(1): 205-213.
[8] 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72.
[9] 楼烨, 张广清. 压裂液黏度对循环水力压裂影响的试验研究[J]. 岩土力学, 2019, 40(S1): 109-118.
[10] 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274.
[11] 杨道学, 赵奎, 曾鹏, 卓毓龙, . 基于粒子群优化算法的未知波速声发射 定位数值模[J]. 岩土力学, 2019, 40(S1): 494-502.
[12] 侯公羽, 荆浩勇, 梁金平, 张广东, 谭金鑫, 张永康, 杨希, . 不同卸荷速率下矩形巷道变形及 声发射特性试验研究[J]. 岩土力学, 2019, 40(9): 3309-3318.
[13] 宋义敏, 邓琳琳, 吕祥锋, 许海亮, 赵泽鑫, . 岩石摩擦滑动变形演化及声发射特征研究[J]. 岩土力学, 2019, 40(8): 2899-2906.
[14] 程爱平, 张玉山, 戴顺意, 董福松, 曾文旭, 李丹峰, . 单轴压缩胶结充填体声发射参数 时空演化规律及破裂预测[J]. 岩土力学, 2019, 40(8): 2965-2974.
[15] 张传庆, 刘振江, 张春生, 周辉, 高阳, 侯靖, . 隐晶质玄武岩破裂演化及破坏特征试验研究[J]. 岩土力学, 2019, 40(7): 2487-2496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!