›› 2016, Vol. 37 ›› Issue (S1): 603-608.doi: 10.16285/j.rsm.2016.S1.079

• 数值分析 • 上一篇    下一篇

微生物灌浆的颗粒流细观力学数值模拟研究

秦鹏飞   

  1. 郑州工业应用技术学院 建筑工程学院,河南 郑州 450010
  • 收稿日期:2015-05-26 出版日期:2016-06-16 发布日期:2018-06-09
  • 作者简介:秦鹏飞,男,1984年生,博士研究生,主要从事地基处理方面的研究。
  • 基金资助:
    国家自然科学基金(No.51279217)。

Mesomechanics particle flow numerical simulation research on sandy soil bio-grouting

QIN Peng-fei   

  1. School of Architecture and Civil Engineering, Zhengzhou University of Industrial Technology, Zhengzhou, Henan 450010, China
  • Received:2015-05-26 Online:2016-06-16 Published:2018-06-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51279217).

摘要: 基于流固耦合原理的PFC2D颗粒流数值模拟程序,运用其内置FISHTANK函数库和FISH语言,分别定义流体域的流动方程和压力方程,对微生物灌浆过程中菌液在地层中的扩散过程和形态进行了数值模拟计算。通过调节PFC命令流中的注浆压力p、时步step、水力传导系数perm等参数对菌液的注浆过程进行了模拟计算。数值模拟计算表明,灌浆过程中菌液与地基土的作用形式与灌浆压力大小密切相关,过高的注浆压力会对地层结构造成一定的破坏。对钻孔周围土体的应力状态进行了理论推导和分析,理论推导结果与数值模拟结果相符。劈裂灌浆作用发生时,孔隙率和应变率均增加。

关键词: 微生物灌浆, 颗粒流, 数值模拟, 注浆压力, 注浆时间, 渗透性质

Abstract: Based on the principle of fluid-structure coupling numerical simulation program, PFC2D particles flow, which uses its built-in FISHTANK function library and FISH language, the flow equation and pressure equation of fluid domain have been defined. The process of grouting slurry diffusion in the formation and shape are simulated and calculated. By adjusting the parameter of step and perm in PFC’s command stream, grouting effects in different penetration gravels are obtained. Numerical simulation indicates that action modes between serous fluid and ground soil are mutually affected by the grouting pressure; foundation structure will be destroyed as the grouting pressure increases excessively. Stressed states around the drilling hole have been analyzed theoretically. The theoretical results are consistent with the simulation ones. When split grouting action occurs the porosity and strain increase.

Key words: bio-grouting, grouting, particle flow, numerical simulation, grouting pressure, grout time, penetration

中图分类号: 

  • TU 443
[1] 卞康, 陈彦安, 刘建, 崔德山, 李一冉, 梁文迪, 韩啸. 不同吸水时间下页岩卸荷破坏特征的 颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367.
[2] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[3] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[4] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[5] 张浩, 施成华, 彭立敏, 雷明锋. 模袋袖阀管压密注浆的注浆压力理论计算方法研究[J]. 岩土力学, 2020, 41(4): 1313-1322.
[6] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[7] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[8] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[9] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[10] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[11] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[12] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[13] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[14] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[15] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!