›› 2016, Vol. 37 ›› Issue (S2): 543-551.doi: 10.16285/j.rsm.2016.S2.069

• 岩土工程研究 • 上一篇    下一篇

软土地层盾构隧道结构整体抬升实践

朱瑶宏1,夏汉庸1,胡志飞2   

  1. 1. 宁波市轨道交通集团有限公司,浙江 宁波 315101;2. 同济大学 交通运输工程学院,上海 200092
  • 收稿日期:2015-02-04 出版日期:2016-11-11 发布日期:2018-06-09
  • 作者简介:朱瑶宏,男,1960年生,硕士,教授级高工,主要从事轨道交通工程方面的研究

An uplifting practice of shield tunnel in soft ground

ZHU Yao-hong1, XIA Han-yong1, HU Zhi-fei2   

  1. 1. Ningbo Rail Transit Group Limited Co., Ningbo, Zhejiang 315010, China; 2. College of Transportation Engineering, Tongji University, Shanghai 200092, China
  • Received:2015-02-04 Online:2016-11-11 Published:2018-06-09

摘要: 软土地层盾构施工易沉降过大导致轴线偏差,出现调坡困难,甚至影响后期列车运行速度,注浆抬升是轴线偏差治理的一种方法。宁波轨道交通某区间在施工过程中因对地层变化理解不彻底,导致沉降过大,调坡困难,为了不造成结构破坏,不影响工程工期,使隧道线型得到改善,对隧道结构整体抬升进行了实践。通过对地质情况分析,结构验算,注浆工艺研究,提出了下部注浆,内部支撑,实时监控,即时调整的思路,在注浆过程及时调整浆液。经过精细化管理,该区间最大稳定抬升量达3 cm。工程实践表明,注浆工艺和内部支撑对抬升阶段通用环管片结构安全起到重要作用,浆液的选择对后期稳定非常重要。该工程探索了软土地层盾构隧道不均匀沉降治理、控制措施,可为其他盾构隧道沉降治理提供参考和抬升设计提供依据。

关键词: 软土地层, 盾构隧道, 隧道结构, 注浆抬升

Abstract: Axis deviation easily occurs during shield tunneling in soft clays due to the overlarge settlement, while adjusting the slope ratio of tunnel difficulty, even affecting the running speed of trains during the operation period. Grouting uplift is a solution to axis deviation. In order to not cause structural failure, not affect construction period, and improve the tunnel line shape, a case of uplifting practice for overall tunnel structure in an inter zone with overlarge settlement of Ningbo metro construction is studied in this paper. Through the analysis of the geological condition, structure calculation, grouting process research, lower part of tunnel structure grouting, internal support, real-time monitoring, real-time ideas adjustment, the process of grouting slurry adjustment timely; and the fine management, the integral structure of tunnel is uplifted about 3cm without causing any damage; so that the tunnel line shape is improved effectively. The engineering practice shows that the grouting process and internal support play an important role to uplift stage general ring structure safety; slurry choice is very important to late stability. And by the practice, control measures for uneven subsidence of tunnel construction in soft clays are explored to provide references for other similar engineering and shield tunnel uplift designing.

Key words: soft ground, shield tunnel, tunnel structure, grouting uplift

中图分类号: 

  • TU 433
[1] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[2] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[3] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[4] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[5] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[6] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[7] 莫振泽, 王梦恕, 李海波, 钱勇进, 罗跟东, 王辉, . 粉砂地层中浓泥土压盾构泥膜效应引起的 孔压变化规律试验研究[J]. 岩土力学, 2019, 40(6): 2257-2263.
[8] 姚爱军,张剑涛,郭海峰,郭彦非. 地铁盾构隧道上方基坑开挖卸荷-加载影响研究[J]. , 2018, 39(7): 2318-2326.
[9] 钟 宇,陈 健,陈国良,吴佳明, . 基于建筑信息模型技术的盾构隧道结构信息模型建模方法[J]. , 2018, 39(5): 1867-1876.
[10] 杨文波,陈子全,徐朝阳,晏启祥,何 川,韦 凯, . 盾构隧道与周围土体在列车振动荷载作用下的动力响应特性[J]. , 2018, 39(2): 537-545.
[11] 康 成, 梅国雄, 梁荣柱, 吴文兵, 方宇翔, 柯宅邦, . 地表临时堆载诱发下既有盾构隧道纵向变形分析[J]. 岩土力学, 2018, 39(12): 4605-4616.
[12] 李长俊,陈卫忠,杨建平,刘金泉, . 运营期水下盾构隧道管片接缝张开度变化规律[J]. , 2018, 39(10): 3783-3793.
[13] 魏 纲,林 雄,金 睿,丁 智,. 双线盾构施工时邻近地下管线安全性判别[J]. , 2018, 39(1): 181-190.
[14] 姜 燕,杨光华,陈富强,徐传堡,张玉成, . 湛江湾高水头跨海盾构隧道管片结构典型断面受力计算与监测反馈分析[J]. , 2018, 39(1): 275-286.
[15] 马春景,姜谙男,江宗斌,王善勇,. 基于单元状态指标的盾构隧道水-力耦合模拟分析[J]. , 2017, 38(6): 1762-1770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!