›› 2018, Vol. 39 ›› Issue (4): 1500-1508.doi: 10.16285/j.rsm.2017.0335

• 数值分析 • 上一篇    下一篇

气体吸附诱发煤强度劣化的力学模型与数值分析

刘力源,朱万成,魏晨慧,马小惠   

  1. 东北大学 资源与土木工程学院 岩石破裂与失稳研究所,辽宁 沈阳 110819
  • 收稿日期:2017-03-03 出版日期:2018-04-11 发布日期:2018-06-06
  • 通讯作者: 朱万成,男,1974年生,博士,教授,博士生导师,主要从事岩石力学与工程方面的教学与科研工作。E-mail: zhuwancheng@mail.neu.edu.cn E-mail:liyuan426@163.com
  • 作者简介:刘力源,男,1991年生,博士研究生,主要从事岩石力学与多物理场耦合方面的研究工作。
  • 基金资助:

    国家杰出青年科学基金资助项目(No. 51525402);国家自然科学基金项目(No. 51761135102,No. 51304037);中央高校基本科研业务费项目(No. N160104008)。

Mechanical model and numerical analysis of mechanical property alterations of coal induced by gas adsorption

LIU Li-yuan, ZHU Wan-cheng, WEI Chen-hui, MA Xiao-hui   

  1. Center for Rock Instability and Seismicity Research, College of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning 110819, China
  • Received:2017-03-03 Online:2018-04-11 Published:2018-06-06
  • Supported by:

    This work was supported by the National Science Fund for Distinguished Young Scholars of China (51525402), the National Natural Science Foundation of China (51761135102, 51304037) and the Fundamental Research Funds for the Central Universities of China (N160104008).

摘要: 在吸附性气体作用下,煤体将产生吸附应变,吸附应变通过使煤微观结构重新排列从而诱发煤损伤,并使其力学性质劣化。尽管大量试验证实了吸附性气体将会改变煤的力学特性,然而当前描述煤-气相互作用的力学模型并未将吸附诱发的损伤考虑其中,故也无法考虑气体吸附诱发煤强度劣化。基于此,建立一个考虑气体吸附损伤的双重孔隙介质力学模型,揭示气体吸附过程诱发的两个相互作用:一个是游离气体引起的常规弹性力学作用,一个是吸附气体诱发的内部膨胀应力,并在此基础上考虑两个力学作用所带来了煤的附加损伤。研究结果表明:气体吸附诱发煤基质产生细观损伤,以拉伸损伤为主,这使煤的力学性质劣化,表现为弹性模量和强度的降低。吸附能力越强的气体,诱发煤的微观结构改变越大,损伤越明显,甚至会诱发煤样呈现新的破坏形态。超临界CO2会诱发煤更大的损伤和强度劣化。

关键词: 膨胀应力, 局部应变, 全局应变, 吸附损伤, 强度

Abstract: Coal damage by adsorbed gas has been observed and detected in a large number of experiments. Under the action of the adsorbed gas, the adsorption strain of coal is firstly generated, and then coal microstructure is rearranged, which will induce the coal damage and further deteriorate mechanical properties of coal. However, this adsorption-induced damage is usually ignored in the current coal-gas interaction models. Hence, it is necessary to propose a mechanical model for dual porosity medium, considering the adsorption-induced coal damage. In this study, a novel mechanical model was developed to accurately describe coal-gas interactions, including the routine mechanistic effect and the adsorption-induced internal swelling stress. Besides, the additional mechanical damage caused by these two coal mechanic actions was also studied. Research results show adsorption-induced coal damage, mostly in tensile mode, rearranges coal microstructure, and causes significant reductions of coal strength and Young’s module. It is found that the tension damage is the main reason for the gas adsorption-induced damage. In addition, gas with higher adsorption capacity will result in a larger rearrangement of coal microstructure and more significant damage, and it even may cause a new failure pattern. Furthermore, supercritical CO2 with a higher adsorption capacity results in greater damage and causes larger alterations of coal strength and Young’s module.

Key words: swelling stress, local strain, global strain, adsorption-induced damage, strength

中图分类号: 

  • TU 452

[1] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[2] 桂跃, 吴承坤, 赵振兴, 刘声钧, 刘锐, 张秋敏. 微生物分解有机质作用对泥炭土工程性质的影响[J]. 岩土力学, 2020, 41(S1): 147-155.
[3] 刘杰, 杨玉婳, 姚海林, 卢正, 岳婵, . 基于不同改性方法的分散性黏土处治试验研究[J]. 岩土力学, 2020, 41(S1): 163-170.
[4] 邹先坚, 王益腾, 王川婴. 钻孔图像中岩石结构面三维形貌特征及 优势抗滑方向研究[J]. 岩土力学, 2020, 41(S1): 290-298.
[5] 李丽华, 余肖婷, 肖衡林, 马强, 刘一鸣, 杨 星, . 稻壳灰加筋土力学性能研究[J]. 岩土力学, 2020, 41(7): 2168-2178.
[6] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[7] 袁庆盟, 孔亮, 赵亚鹏, . 考虑水合物填充和胶结效应的深海能源土 弹塑性本构模型[J]. 岩土力学, 2020, 41(7): 2304-2312.
[8] 陈昊, 胡小荣. 非饱和土三剪强度准则及验证[J]. 岩土力学, 2020, 41(7): 2380-2388.
[9] 吴再海, 纪洪广, 姜海强, 齐兆军, 寇云鹏, . 尾砂胶结含盐冻结充填体力学特性研究[J]. 岩土力学, 2020, 41(6): 1874-1880.
[10] 瑜璐, 杨庆, 杨钢, 张金利. 塑性极限分析鱼雷锚锚尖贯入阻力[J]. 岩土力学, 2020, 41(6): 1953-1962.
[11] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[12] 刘海峰, 朱长歧, 汪稔, 王新志, 崔翔, 王天民, . 礁灰岩-混凝土界面剪切特性试验研究[J]. 岩土力学, 2020, 41(5): 1540-1548.
[13] 谈云志, 柯睿, 陈君廉, 吴军, 邓永锋. 碱溶液预降解淤泥有机质的效果与机制讨论[J]. 岩土力学, 2020, 41(5): 1567-1572.
[14] 张茂础, 盛谦, 崔臻, 马亚丽娜, 周光新. 岩石材料抗拉强度与劈裂节理面形貌的 加载速率效应研究[J]. 岩土力学, 2020, 41(4): 1169-1178.
[15] 李敏, 孟德骄, 姚昕妤. 基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求[J]. 岩土力学, 2020, 41(4): 1203-1210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!