›› 2017, Vol. 38 ›› Issue (4): 1003-1014.doi: 10.16285/j.rsm.2017.04.011

• 基础理论与实验研究 • 上一篇    下一篇

地铁列车荷载作用下饱和土中圆形衬砌隧道和轨道系统动力响应分析

袁宗浩1, 2,蔡袁强1, 2,袁 万3,徐芫蕾4,曹志刚1, 2   

  1. 1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058;2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058; 3. 江苏省电力设计院,江苏 南京 211102;4. 浙江省建筑科学设计研究院有限公司,浙江 杭州 310012
  • 收稿日期:2015-04-22 出版日期:2017-04-11 发布日期:2018-06-05
  • 作者简介:袁宗浩,男,1990年生,博士研究生,主要从事土动力学方面的研究工作。
  • 基金资助:

    国家自然科学基金资助项目(No.11372274,No. 51208460,No. 51478424);中央高校科研基本业务费(No. 2015QNA4024);高等学校博士学科点专项科研基金资助课题(No. 20130101110028)。

Dynamic response of circular railway tunnel and track system in saturated soil under moving train loading

YUAN Zong-hao1, 2, CAI Yuan-qiang1, 2, YUAN Wan3, XU Yuan-lei4, CAO Zhi-gang1, 2   

  1. 1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 3. Jiangsu Electric Power Design institute, Nanjing, Jiangsu 211102, China; 4. Zhejiang Academy of Building Research & Design Co. Ltd., Hangzhou, Zhejiang 310012, China
  • Received:2015-04-22 Online:2017-04-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Nature Science Foundation of China (11372274, 51208460, 51478424), the Fundamental Research Funds for the Central Universities (2015QNA4024) and the Specialized Research Fund for the Doctoral Program of Higher Education (20130101110028).

摘要: 为研究地铁列车运行引起的轨道系统及饱和土体动力响应问题,采用解析法建立了饱和土全空间中圆形衬砌隧道和轨道结构耦合分析模型,用一系列符合列车几何尺寸的移动常荷载或移动简谐荷载模拟地铁列车,用无限长圆柱壳模拟衬砌,用Biot饱和多孔介质理论模拟土体,用Euler梁理论模拟钢轨、浮置板并组成两层叠合梁单元,结合轨道与衬砌仰拱处的力和位移连续条件,实现浮置板轨道结构与衬砌及周围饱和土体的耦合。通过算例对比了饱和土体模型和弹性土体模型动力响应的差异,分析了饱和土渗透系数、荷载移动速度和自振频率对轨道结构位移、饱和土体位移及孔压的影响。结果表明:当土体渗透性较差时,饱和土位移响应与相应的弹性土位移响应区别明显,土体模型对轨道结构响应影响较小;随着渗透系数的降低,饱和土体孔压增大;荷载移动速度和自振频率对轨道结构和土体动力响应影响显著。

关键词: 饱和土, 衬砌结构, 浮置板轨道, 动力响应, 移动荷载

Abstract: To investigate the dynamic response of the track and saturated soil under moving train loading, a coupling model was developed to analyze the rail structure and underground railway tunnel in the saturated soil by using the analytical method. The train load was simulated by a series of moving constant or harmonic load according to the geometry of a real train. The tunnel was simulated as a thin cylindrical shell of infinite length, and the soil was treated as a saturated poroelastic medium using Biot’s theory. The tracks consisted of two beam units, i.e., an upper Euler-Bernoulli beam to account for the rails and a lower Euler-Bernoulli beam to account for the slab. The tracks and soil medium were coupled by the force and displacement compatibility conditions at the tunnel invert. The different dynamic characteristics of elastic soil medium and saturated soil medium were analyzed. The effects of soil permeability, moving velocity of load, and natural frequency on track responses, rail displacements, and pore pressures of saturated soil were investigated. It is found that the dynamic response of saturated soil medium with a low permeability is different from that of elastic soil medium. But soil model has limited effects on the track responses. The pore pressure increases with decreasing soil permeability. The track responses and pore pressure of the saturated soil are greatly influenced by the velocity and excitation frequency of the moving load.

Key words: saturated soil, tunnel structure, floating slab tracks, dynamic responses, moving loads

中图分类号: 

  • TU 435

[1] 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251.
[2] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[3] 陈昊, 胡小荣. 非饱和土三剪强度准则及验证[J]. 岩土力学, 2020, 41(7): 2380-2388.
[4] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[5] 文伟, 赖远明, 尤哲敏, 李积锋, . 基于Pitzer离子模型的盐渍非饱和土孔隙 相对湿度计算[J]. 岩土力学, 2020, 41(6): 1944-1952.
[6] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[7] 孙德安, 薛垚, 汪磊, . 变荷载作用下考虑半透水边界热传导性的 一维饱和土热固结特性研究[J]. 岩土力学, 2020, 41(5): 1465-1473.
[8] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[9] 柳鸿博, 周凤玺, 岳国栋, 郝磊超. 非饱和土中热弹性波的传播特性分析[J]. 岩土力学, 2020, 41(5): 1613-1624.
[10] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[11] 王立安, 赵建昌, 侯小强, 刘生纬, 王作伟. 非均匀饱和半空间的Lamb问题[J]. 岩土力学, 2020, 41(5): 1790-1798.
[12] 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122.
[13] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
[14] 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304.
[15] 芦苇, 赵冬, 李东波, 毛筱霏. 土遗址全长黏结式锚固系统动力响应解析方法[J]. 岩土力学, 2020, 41(4): 1377-1387.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!