›› 2017, Vol. 38 ›› Issue (4): 1023-1031.doi: 10.16285/j.rsm.2017.04.013

• 基础理论与实验研究 • 上一篇    下一篇

三轴加载下煤岩脉冲水力压裂扩缝机制研究

陈江湛1, 2,曹 函1, 2, 3,孙平贺1, 2,吴晶晶1, 2   

  1. 1. 中南大学 有色金属成矿预测与地质环境监测教育部重点实验室,湖南 长沙 410083; 2. 中南大学 地球科学与信息物理学院,湖南 长沙 410083;3. 湖南科技大学 页岩气资源利用湖南省重点实验室, 湖南 湘潭 411201
  • 收稿日期:2015-12-07 出版日期:2017-04-11 发布日期:2018-06-05
  • 通讯作者: 孙平贺,男,1982年生,博士,副教授,主要从事非开挖、矿产地质及非常规能源钻进技术的教学与科研工作。E-mail: pinghesun@csu.edu.cn E-mail:chenjiangzhan278@163.com
  • 作者简介:陈江湛,男,1991年生,硕士研究生,主要从事非常规能源钻探等方面的研究工作。
  • 基金资助:

    国家自然科学基金项目(No. 41302124);页岩气资源利用湖南省重点实验室开放基金(No. E21425);中南大学中央高校基本科研业务费专项资金资助项目(No. 2016zzts433)。

Mechanisms of fracture extending in coal rock by pulse hydraulic fracturing under triaxial loading

CHEN Jiang-zhan1, 2, CAO Han1, 2, 3, SUN Ping-he1, 2, WU Jing-jing1, 2   

  1. 1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, Central South University, Changsha, Hunan 410083, China; 2. School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China; 3. Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
  • Received:2015-12-07 Online:2017-04-11 Published:2018-06-05
  • Supported by:

    This works was supported by the National Natural Science Foundation of China (41302124), the Foundation of Hunan Provincal Key Laboratory of Shale Gas Resources Utilization (E21425) and the Fundamental Research Funds for the Central Universities of Central South University(2016zzts433).

摘要: 为了研究煤岩脉冲水力压裂扩缝机制,利用三轴加载脉冲水力压裂试验系统,分别从改变脉冲频率和压裂液黏度两个方面对煤岩进行了水力压裂室内试验。试验结果表明:脉冲压力和声发射对压裂过程的响应情况可将煤岩脉冲水力压裂扩缝过程分为零散萌生、均匀扩展、突变贯通和破裂终止4个阶段,其中声发射定位点空间展布的平均速率在均匀扩展和突变贯通阶段较零散萌生阶段分别提高了4.6倍和9.6倍;声发射b值曲线的趋势显示,均匀扩展阶段煤岩内部以小尺度的微裂纹破裂为主,突变扩展阶段煤岩内部出现了较大尺度主裂缝扩展,并且部分b值曲线呈现出山脊线状与阶梯状相结合的特点;在达到最佳压裂脉冲频率前,高频脉冲压力作用的煤岩,扩缝过程的均匀扩展阶段和突变贯穿阶段的延续时间比低频对应的延续时间短;随着压裂液黏度增高,扩缝过程均匀扩展阶段的延续时间呈缩短趋势,但突变贯穿阶段的延续时间却有增长的趋势。

关键词: 脉冲水力压裂, 脉冲频率, 压裂液黏度, 声发射, 扩缝

Abstract: This study is to investigate the mechanisms of fracture extending in coal rock by pulse hydraulic fracturing. Experiments are performed on coal rock samples using a pulse hydraulic fracturing experimental system under triaxial loading by changing the pulse frequency and viscosity of fracturing fluid. Experimental results show that the fracturing response of pulse pressure and acoustic emission (AE) indicates the process of fracture extending induced by pulse hydraulic fracturing can be divided into four periods, i.e., scattered initiation period, uniform growth period, sudden coalescence period and failure termination period. The average rates of the spatial distribution of AE locations at the uniform growth period and sudden coalescence period are 4.6 and 9.6 times higher than the scattered initiation period respectively. The general tendency of b-value curves demonstrates that microcracks mainly propagate at the uniform growth period and large scale cracks primarily propagate at the sudden coalescence period. The partial b-value curves present the characteristics by combining the shape of ridge line with ladder shape. Before the fracturing pulse frequency reaches the optimum state, the duration of uniform growth period and sudden coalescence period affected by high frequency pulse pressure is shorter than that by low frequency one. Under the same frequency, the duration of uniform growth period exhibits a shortening trend, as the viscosity of fracturing fluid increases, but the duration of sudden coalescence period shows the opposite way.

Key words: pulse hydraulic fracturing, pulse frequency, viscosity of fracturing fluid, acoustic emission, fracture extending

中图分类号: 

  • TD 322

[1] 王创业, 常新科, 刘沂琳, 郭文彬, . 单轴压缩条件下大理岩破裂过程声发射频谱 演化特征实验研究[J]. 岩土力学, 2020, 41(S1): 51-62.
[2] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[3] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[4] 甘一雄, 吴顺川, 任义, 张光, . 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332.
[5] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[6] 张艳博, 孙林, 姚旭龙, 梁鹏, 田宝柱, 刘祥鑫, . 花岗岩破裂过程声发射关键信号时 频特征试验研究[J]. 岩土力学, 2020, 41(1): 157-165.
[7] 郑坤, 孟庆山, 汪稔, 余克服, . 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 2020, 41(1): 205-213.
[8] 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72.
[9] 楼烨, 张广清. 压裂液黏度对循环水力压裂影响的试验研究[J]. 岩土力学, 2019, 40(S1): 109-118.
[10] 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274.
[11] 杨道学, 赵奎, 曾鹏, 卓毓龙, . 基于粒子群优化算法的未知波速声发射 定位数值模[J]. 岩土力学, 2019, 40(S1): 494-502.
[12] 侯公羽, 荆浩勇, 梁金平, 张广东, 谭金鑫, 张永康, 杨希, . 不同卸荷速率下矩形巷道变形及 声发射特性试验研究[J]. 岩土力学, 2019, 40(9): 3309-3318.
[13] 宋义敏, 邓琳琳, 吕祥锋, 许海亮, 赵泽鑫, . 岩石摩擦滑动变形演化及声发射特征研究[J]. 岩土力学, 2019, 40(8): 2899-2906.
[14] 程爱平, 张玉山, 戴顺意, 董福松, 曾文旭, 李丹峰, . 单轴压缩胶结充填体声发射参数 时空演化规律及破裂预测[J]. 岩土力学, 2019, 40(8): 2965-2974.
[15] 张传庆, 刘振江, 张春生, 周辉, 高阳, 侯靖, . 隐晶质玄武岩破裂演化及破坏特征试验研究[J]. 岩土力学, 2019, 40(7): 2487-2496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!