›› 2018, Vol. 39 ›› Issue (2): 621-634.doi: 10.16285/j.rsm.2017.1057

• 基础理论与实验研究 • 上一篇    下一篇

深部三维圆形洞室岩爆过程的模拟试验

司雪峰1,宫凤强1, 2, 3,罗 勇1,李夕兵1, 2, 3   

  1. 1. 中南大学 资源与安全工程学院,湖南 长沙 410083;2. 中南大学 深部金属矿产开发与灾害控制湖南省重点实验室,湖南 长沙 410083; 3. 中南大学 高等研究中心工程材料力学研究所,湖南 长沙 410083
  • 收稿日期:2017-05-30 出版日期:2018-02-10 发布日期:2018-06-06
  • 通讯作者: 宫凤强,男,1979年生,博士,副教授,博士生导师,主要从事深部岩石力学与工程可靠度方面的教学与科研工作。E-mail:fengqiangg@126.com E-mail:xuefsi@163.com
  • 作者简介:司雪峰,男,1991年生,硕士研究生,主要从事深部岩石力学的研究
  • 基金资助:

    国家自然科学基金(No. 41472269);中南大学中央高校基本科研业务费专项资金(No. 2017zzts535)。

Experimental simulation on rockburst process of deep three-dimensional circular cavern

SI Xue-feng1, GONG Feng-qiang1, 2, 3, LUO Yong1, LI Xi-bing1, 2, 3   

  1. 1. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China; 2. Hunan Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines, Central South University, Changsha, Hunan 410083, China; 3. Institute of Mechanics for Engineering Materials, Advanced Research Center, Central South University, Changsha, Hunan 410083, China
  • Received:2017-05-30 Online:2018-02-10 Published:2018-06-06
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41472269) and the Fundamental Research Funds for the Central Universities of Central South University (2017zzts535).

摘要: 为了模拟深部圆形洞室三维受力情况下岩爆的发生过程,以具有极强岩爆倾向性的花岗岩作为试验材料,利用自行研制的TRW?3000岩石真三轴电液伺服诱变试验机,对含直径50 mm贯穿圆形孔洞的100 mm×100 mm×100 mm立方体花岗岩试样进行了三向不等压加载试验。试验首先模拟1 000 m深度的初始应力环境,以垂直于洞室轴向的水平方向作为最小主应力方向,通过增加竖直方向应力模拟应力调整过程诱发岩爆情况,并借助三维加载岩样内部结构破坏实时视频监控系统监控洞壁破坏情况。试验结果表明,岩爆过程可以划分为平静阶段、颗粒弹射阶段、岩片剥落和爆裂阶段,洞壁两侧中间部位应力集中系数最高,最先产生破坏,然后沿径向向深部发展,最终形成两个对称型的V型槽。圆形洞室洞壁两侧破坏的3个典型受力节点,符合深部工程中统计得到的无支护圆形巷道的远场应力状态与破坏模式之间的关系,达到了模拟的效果。利用现有的4种岩爆判据进行了分析,判别结果与试验过程中拍摄到的洞壁破坏情况基本一致。洞壁的破坏伴随着声发射计数增加和能量升高,岩爆越剧烈,声发射越活跃。

关键词: 岩石力学, 圆形洞室, 岩爆, 真三轴试验, 三维高应力, 声发射

Abstract: To simulate the rockburst process of deep circular cavern under three-dimensional (3D) stress conditions, the granite material with extremely strong rockburst tendency was used for testing. True-triaxial compression tests were conducted on the cubic granite sample (100 mm×100 mm×100 mm cube granite sample with a diameter of 50 mm through circular hole) by using a self-developed TRW-3000 true-triaxial rock electro-hydraulic servo mutation testing machine. In the experiment, an initial stress environment of 1 000 m depth was simulated. Then, the stress in the vertical direction was increased gradually, and the hole wall was monitored with a real-time micro-camera and acoustic emission (AE) device. The results show that failure process can be divided into four stages, i.e., calm stage, pellet ejection stage, rock exfoliation stage and rockburst stage. The middle parts of the circular hole have the highest stress concentration factor and the damage is initiated. Then cracks develop along the radial direction to the deep part of the tunnel, and ultimately form two symmetrical V-shaped notches. Three typical loading points reflecting the failure states of the hole wall are in line with the statistical relationship of the far field stress state and failure mode of deep circular roadway without support. Four kinds of rockburst criteria are also applied to analyse failure states of the hole wall under different loading conditions, and the results are consistent with the failure states recorded in the testing process. The failure of the wall is accompanied by an increase of AE count and AE energy. The more severe the rockburst is, the more active is the AE.

Key words: rock mechanics, circular cavern, rockburst, true-triaxial test, three-dimensional high stress, acoustic emission

中图分类号: 

  • TU 45

[1] 王创业, 常新科, 刘沂琳, 郭文彬, . 单轴压缩条件下大理岩破裂过程声发射频谱 演化特征实验研究[J]. 岩土力学, 2020, 41(S1): 51-62.
[2] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[3] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[4] 甘一雄, 吴顺川, 任义, 张光, . 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332.
[5] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[6] 陈炳瑞, 冯夏庭, 符启卿, 王搏, 朱新豪, 李涛, 陆菜平, 夏欢, . 综合集成高精度智能微震监测技术 及其在深部岩石工程中的应用[J]. 岩土力学, 2020, 41(7): 2422-2431.
[7] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[8] 金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939-951.
[9] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[10] 张艳博, 孙林, 姚旭龙, 梁鹏, 田宝柱, 刘祥鑫, . 花岗岩破裂过程声发射关键信号时 频特征试验研究[J]. 岩土力学, 2020, 41(1): 157-165.
[11] 郑坤, 孟庆山, 汪稔, 余克服, . 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 2020, 41(1): 205-213.
[12] 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72.
[13] 楼烨, 张广清. 压裂液黏度对循环水力压裂影响的试验研究[J]. 岩土力学, 2019, 40(S1): 109-118.
[14] 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274.
[15] 杨道学, 赵奎, 曾鹏, 卓毓龙, . 基于粒子群优化算法的未知波速声发射 定位数值模[J]. 岩土力学, 2019, 40(S1): 494-502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!