›› 2018, Vol. 39 ›› Issue (2): 561-570.doi: 10.16285/j.rsm.2017.1128

• 基础理论与实验研究 • 上一篇    下一篇

多年冻土活动层浅层包气带水-汽-热耦合运移规律

张明礼1, 2, 3,温 智3,董建华1,王得楷2,侯彦东1,薛 珂3,杨晓宇1,孙国栋1   

  1. 1. 兰州理工大学 土木工程学院,甘肃 兰州 730050;2. 甘肃省科学院 地质自然灾害防治研究所,甘肃 兰州 730000; 3. 中国科学院西北生态环境资源研究院 冻土工程国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2017-06-06 出版日期:2018-02-10 发布日期:2018-06-06
  • 通讯作者: 温智,男,1976年生,男,博士,研究员,博士生导师,主要从事冻土力学与寒区工程方面的研究。E-mail:wenzhi@lzb.ac.cn E-mail:mingli_0919@126.com
  • 作者简介:张明礼,男,1987年生,博士(后),讲师,主要从事冻土工程方面的研究。
  • 基金资助:

    国家自然科学基金项目(No. 41471061,No. 41690144,No. 51778275);甘肃省科技计划资助——青年科技基金(No. 17JR5RA115);冻土工程国家重点实验室自主课题(No. SKLFSE-ZT-22);中科院寒旱所STS项目(No. HHS-TSS-STS-1502);中国博士后科学基金(No. 2017M623268)。

Coupled water-vapor-heat transport in shallow unsaturated zone of active layer in permafrost regions

ZHANG Ming-li1, 2, 3, WEN Zhi3, DONG Jian-hua1, WANG De-kai2, HOU Yan-dong1, XUE Ke3, YANG Xiao-yu1, SUN Guo-dong1   

  1. 1. College of Civil Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. Geological Hazards Prevention Institute, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China; 3. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2017-06-06 Online:2018-02-10 Published:2018-06-06
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41471061, 41690144, 51778275), the Science and Technology Foundation for Youth of Gansu Province (17JR5RA115), the Research Project of the State Key Laboratory of Frozen Soils Engineering (SKLFSE-ZT-22), the Fund of the Cold and Arid Regions Environmental and Engineering Research Institute (HHS-TSS-STS-1502) and the China Postdoctoral Science Foundation (2017M623268).

摘要: 活动层水热状态直接影响多年冻土和寒区工程的稳定性。已有研究大多基于附面层理论研究冻土温度场变化,较少研究液态水和水汽运移过程及其对冻土温度场的影响。结合多年冻土活动层包气带水-热耦合迁移的物理过程和内在机制,以温度和含水率为基本变量,建立了考虑液态水和水汽相变、水分对流传热和水汽运移的土壤-地表-大气能量平衡及土壤内部水热变化的耦合模型,分析了真实野外气象条件下活动层液态水和水汽运移规律。计算结果表明:白天温度梯度水分向土壤内部运移,夜间温度梯度水分向土壤表层运移;暖季温度梯度水分以向土壤内部运移为主,冷季温度梯度水分以向地表运移为主;就全年而言,活动层各个深度处水汽运移作用大于15%,水势梯度水汽运移极小可以忽略不计,特别是浅层土壤在无降雨状态下,水分运移以温度梯度水汽运移为主;水势梯度液态水通量受降雨影响明显,在降雨事件期间和之后,液态水和水汽下渗占主导地位,降雨降低表层土壤温度、减小土壤热传导通量,有利于土壤热稳定性。

关键词: 非饱和土, 活动层, 水分运移, 热传递, 水汽流动, 蒸发

Abstract: The thermal-moisture dynamics of the active layer directly affects the stability of permafrost and engineering projects in cold regions. Previous studies mainly focus on the thermal stability of permafrost based on the adherent layer theory. The migration process of liquid water and water vapor and its effects on the active layer are still lack of consideration. Considering the physical process and mechanism of liquid water-vapor transfer in unsaturated soils, a new heat and mass transfer model in saturated-unsaturated partially frozen soil was developed, in which the moisture migration in both vapor and liquid phases and heat transfer by means of conduction, convection and phase change were accommodated. The established water-vapor-heat transport model was used to analyze the water-vapor-heat transport in the shallow unsaturated zone of active layer under the in-situ meteorological conditions. The results show that the liquid water and water vapor are driven by the temperature gradient flow downward during daytime but upward at night, the liquid water and water vapor are driven by the temperature gradient flow upward in warm season but downward in cold season. Vapor water accounts for more than 15% of the water flux in the active layer and the water vapor driven by the pressure head can be neglected throughout the year. The moisture transport is mainly controlled by temperature gradient in sunny days. During and after rainfall events, rainfall infiltration is significantly enhanced and liquid water and water vapor mainly infiltrate downward. Rainfall can significantly decrease surface soil heat flux, heat conduction and soil temperature, which mitigate the permafrost degradation process.

Key words: unsaturated soil, active layer, water transport, heat transfer, vapor flow, evaporation

中图分类号: 

  • TU 445

[1] 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251.
[2] 陈昊, 胡小荣. 非饱和土三剪强度准则及验证[J]. 岩土力学, 2020, 41(7): 2380-2388.
[3] 文伟, 赖远明, 尤哲敏, 李积锋, . 基于Pitzer离子模型的盐渍非饱和土孔隙 相对湿度计算[J]. 岩土力学, 2020, 41(6): 1944-1952.
[4] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[5] 张明礼, 温智, 董建华, 王得楷, 岳国栋, 王斌, 高樯. 考虑降雨作用的多年冻土区不同地表土质 活动层水热过程差异分析[J]. 岩土力学, 2020, 41(5): 1549-1559.
[6] 柳鸿博, 周凤玺, 岳国栋, 郝磊超. 非饱和土中热弹性波的传播特性分析[J]. 岩土力学, 2020, 41(5): 1613-1624.
[7] 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122.
[8] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
[9] 李华, 李同录, 江睿君, 范江文. 基于滤纸法的非饱和渗透性曲线测试[J]. 岩土力学, 2020, 41(3): 895-904.
[10] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[11] 邓子千, 陈嘉帅, 王建伟, 刘小文, . 基于SFG模型的统一屈服面本构模型与试验研究[J]. 岩土力学, 2020, 41(2): 527-534.
[12] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[13] 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686.
[14] 刘丽, 吴羊, 陈立宏, 刘建坤, . 基于数值模拟的湿润锋前进法测量精度分析[J]. 岩土力学, 2019, 40(S1): 341-349.
[15] 陈卫忠, 雷江, 于洪丹, 李翻翻, 马永尚, 闫宪洋, . 黏土岩饱和过程中水分运移规律试验研究[J]. 岩土力学, 2019, 40(9): 3327-3334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!