›› 2017, Vol. 38 ›› Issue (12): 3427-3435.doi: 10.16285/j.rsm.2017.12.005

• 基础理论与实验研究 • 上一篇    下一篇

注浆对盾构隧道渗漏引起的孔隙水压力变化的影响

张冬梅1, 2,冉龙洲3,闫静雅4,杨天亮2   

  1. 1. 同济大学 岩土及地下工程教育部重点实验室,上海 200092;2. 上海市地质调查研究院 国土资源部地面沉降监测与防治重点实验室,上海 201204;3. 天津市市政工程设计研究院,天津 300051;4. 上海地铁维护保障有限公司,上海 200070
  • 收稿日期:2016-01-18 出版日期:2017-12-11 发布日期:2018-06-05
  • 作者简介:张冬梅,女,1975年生,博士,教授,博士生导师,主要从事软土盾构隧道结构安全方面的研究工作。
  • 基金资助:

    国家自然科学基金(No.51478344,No.41772295);国土资源部地面沉降监测与防治重点实验室开放基金(No.KLLSMP201501)。

Effect of grouting on tunnel leakage-induced pore pressure change in saturated soft soils

ZHANG Dong-mei1, 2 , RAN Long-zhou3, YAN Jing-ya4, YANG Tian-liang2   

  1. 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Land Subsidence Monitoring and Prevention of Ministry of Land and Resources of China, Shanghai Institute of Geological Survey, Shanghai 201204, China. 3. Tianjin Municipal Engineering Design & Research Institute, Tianjin 300051, China; 4. Maintenance Management of Shanghai Metro Co., Ltd., Shanghai 200070, China
  • Received:2016-01-18 Online:2017-12-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51478344, 41772295) and the Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Land and Resources of the People's Republic of China (KLLSMP201501).

摘要: 接缝和注浆孔是运营隧道渗漏水的主要通道,渗漏水引起孔隙水压力下降,引发隧道和地层的附加沉降。为了控制隧道渗漏水,工程上经常采用注浆进行处理,而作为控制隧道沉降的同步注浆和二次注浆也认为是盾构隧道防水的第1道防线。然而,目前注浆对隧道渗漏水的影响规律和机制不明确,为研究注浆对隧道渗漏水的影响,首先通过室内试验得到不同类型注浆体的渗透特性,试验发现无论惰性浆液还是可硬性浆液,其渗透特性在凝固初期都随时间和固结压力逐渐减小,最终,惰性浆液的渗透系数大于可硬性浆液,因此,可硬性浆液对隧道渗漏水有一定的控制效果;提出了隧道渗漏引发的土体孔隙水压力变化计算方法,该方法能综合考虑土体-注浆层-管片的共同作用;揭示了注浆对隧道渗漏水的影响规律,注浆对渗漏水的影响取决于注浆体和管片的相对渗透系数;提出了能够反映注浆体和管片对孔隙水压力变化影响的评价指标。研究发现,注浆能减小隧道渗漏引起的地层孔隙水压力的下降,但其影响程度受到隧道管片与土体相对渗透系数的影响。

关键词: 注浆, 盾构隧道, 渗漏, 孔隙水压力, 相对渗透系数

Abstract: Tunnel leakage happens very often through shield tunnel joints and grouting holes. It can induce the pore pressure decrease around the tunnel and then result in tunnel and ground settlements. In tunnel engineering, Grouting is usually used to prevent tunnel leakage. What’s more, the synchronous grouting is considered to be the first barrier of tunnel leakage. To investigate the effect of grouting on tunnel leakage, the permeability of inert and cement grouting is firstly studied using laboratory tests. The experimental results show that the permeability of both inert and cement grouting decreases with time and consolidation pressure at the early ages of grouting. The stable permeability of inert grouting is higher than that of the cement grouting. Thus, the cement grouting rather than the inert grouting can be used to prevent tunnel leakage. Then, the predicting method of tunnel leakage-induced pore pressure decrease is suggested considering the effect of grouting and tunnel lining. The calculations results show that the cement grouting can reduce the tunnel leakage-induced pore pressure decrease. Furthermore, the effect of grouting on tunnel leakage-induced pore pressure change depends on the permeability of tunnel lining. Finally, a dimensionless parameter RP is proposed to describe the relationship of tunnel leakage-induced pore pressure change and the permeability of grouting and tunnel lining. The results show that the grouting can reduce the decrease of leakage-induced water pressure, while, the effect of grouting on tunnel leakage depends on the relative permeability of tunnel lining and surrounding soils.

Key words: grouting, shield tunnel, leakage, pore pressure, relative permeability

中图分类号: 

  • TU 457

[1] 郑刚, 栗晴瀚, 程雪松, 哈达, 赵悦镔. 承压层快速减压与回灌应用于隧道抢险的理论与设计[J]. 岩土力学, 2020, 41(S1): 208-216.
[2] 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260.
[3] 胡盛斌, 杜国平, 徐国元, 周天忠, 钟有信, 石重庆, . 基于能量测量的声呐渗流矢量法及其应用[J]. 岩土力学, 2020, 41(6): 2143-2154.
[4] 张升, 高峰, 陈琪磊, 盛岱超, . 砂-粉土混合料在列车荷载作用下 细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598.
[5] 张浩, 施成华, 彭立敏, 雷明锋. 模袋袖阀管压密注浆的注浆压力理论计算方法研究[J]. 岩土力学, 2020, 41(4): 1313-1322.
[6] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[7] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
[8] 陈贺, 张玉芳, 张新民, 魏少伟, . 高压注浆钢花管微型桩抗滑特性 足尺模型试验研究[J]. 岩土力学, 2020, 41(2): 428-436.
[9] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[10] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[11] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[12] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[13] 于丽, 吕城, 段儒禹, 王明年, . 考虑孔隙水压力及非线性Mohr-Coulomb破坏准则下浅埋土质隧道三维塌落机制的上限分析[J]. 岩土力学, 2020, 41(1): 194-204.
[14] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[15] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!