›› 2018, Vol. 39 ›› Issue (1): 93-102.doi: 10.16285/j.rsm.2017.1527
唐建一,徐东升,刘华北
TANG Jian-yi, XU Dong-sheng, LIU Hua-bei
摘要: 为了探究不同含石量对土石混合体的抗剪强度及剪胀性的影响,利用先进的大型单剪试验仪进行了21组大型单剪试验。试验设计了从0%~80%含石量共7组试验样品,在100、200、300 kPa三种不同的法向压力下进行单剪试验。基于试验结果,分析了含石量对土石混合体的抗剪强度和剪胀、剪缩特性之间的关系。试验结果表明,在相同的法向压力下,随着含石量的增加,土石混合体的内摩擦角及黏聚力总体上有先增大后减小的趋势。当土石混合体在含石量为40%~50%之间时,其抗剪强度最大。研究表明:土石混合体抗剪强度受到土石混合体孔隙比的影响,同时随着含石量的增加,土石混合体中的结构形式及主导颗粒也相应的发生变化。当含石量在0%~20%之间时,细集料在土石混合体中占主导地位,土石混合体为悬浮密实结构,此时土石混合体的抗剪强度与基质颗粒的性质相近;当含石量在20%~50%时,土石混合体为骨架孔隙结构,随着含石量的增加,土石混合体的骨架逐渐形成,颗粒之间咬合力增加,使得黏聚力及内摩擦角都有明显提高;当含石量超过50%之后,土石混合体表现为骨架密实结构,孔隙率开始上升并且细粒料开始大幅减少,细集料不能充分填充块石之间的孔隙,于是土石混合体抗剪强度开始下降。
中图分类号:
TD 853.34
[1] | 桂跃, 吴承坤, 赵振兴, 刘声钧, 刘锐, 张秋敏. 微生物分解有机质作用对泥炭土工程性质的影响[J]. 岩土力学, 2020, 41(S1): 147-155. |
[2] | 刘杰, 杨玉婳, 姚海林, 卢正, 岳婵, . 基于不同改性方法的分散性黏土处治试验研究[J]. 岩土力学, 2020, 41(S1): 163-170. |
[3] | 邹先坚, 王益腾, 王川婴. 钻孔图像中岩石结构面三维形貌特征及 优势抗滑方向研究[J]. 岩土力学, 2020, 41(S1): 290-298. |
[4] | 袁庆盟, 孔亮, 赵亚鹏, . 考虑水合物填充和胶结效应的深海能源土 弹塑性本构模型[J]. 岩土力学, 2020, 41(7): 2304-2312. |
[5] | 瑜璐, 杨庆, 杨钢, 张金利. 塑性极限分析鱼雷锚锚尖贯入阻力[J]. 岩土力学, 2020, 41(6): 1953-1962. |
[6] | 刘建民, 邱月, 郭婷婷, 宋文智, 谷川, . 饱和粉质黏土静剪强度与振动后 静剪强度对比研究[J]. 岩土力学, 2020, 41(3): 773-780. |
[7] | 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654. |
[8] | 李小刚, 朱长歧, 崔翔, 张珀瑜, 王睿, . 含碳酸盐混合砂的三轴剪切试验研究[J]. 岩土力学, 2020, 41(1): 123-131. |
[9] | 张晨阳, 谌民, 胡明鉴, 王新志, 唐健健, . 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(S1): 195-202. |
[10] | 王欢, 陈群, 王红鑫, 张文举, . 不同压实度和基质吸力的粉煤灰三轴试验研究[J]. 岩土力学, 2019, 40(S1): 224-230. |
[11] | 郑耀林, 章荣军, 郑俊杰, 董超强, 陆展, . 絮凝-固化联合处理超高含水率 吹填淤泥浆的试验研究[J]. 岩土力学, 2019, 40(8): 3107-3114. |
[12] | 洪本根, 罗嗣海, 胡世丽, 王观石, 姚康, . 基质吸力对非饱和离子型稀土抗剪强度的影响[J]. 岩土力学, 2019, 40(6): 2303-2310. |
[13] | 周小文, 程 力, 周 密, 王 齐, . 离心机中球形贯入仪贯入黏土特性[J]. 岩土力学, 2019, 40(5): 1713-1720. |
[14] | 付宏渊, 刘 杰, 曾 铃, 卞汉兵, 史振宁, . 考虑荷载与浸水条件的预崩解炭质泥岩 变形与强度试验[J]. 岩土力学, 2019, 40(4): 1273-1280. |
[15] | 张景科, 单婷婷, 王玉超, 王 南, 樊 孟, 赵林毅, . 土遗址锚固土体-浆体(CGN+C)界面力学性能[J]. 岩土力学, 2019, 40(3): 903-912. |
|