›› 2018, Vol. 39 ›› Issue (5): 1675-1682.doi: 10.16285/j.rsm.2017.1804

• 基础理论与实验研究 • 上一篇    下一篇

非饱和土一维大变形固结模型

周亚东1, 2,邓 安3,鹿 群1, 2   

  1. 1. 天津城建大学 土木工程学院,天津 300384;2. 天津城建大学 天津市软土特性与工程环境重点实验室,天津 300384; 3. 阿德莱德大学 土木、环境与采矿工程学院,澳大利亚 阿德莱德 5005
  • 收稿日期:2017-08-30 出版日期:2018-05-11 发布日期:2018-06-12
  • 基金资助:

    国家自然科学基金项目(No. 51608351);天津市应用基础与前沿技术研究计划(No. 15JCYBJC48900)。

A one-dimensional consolidation model considering large strain for unsaturated soil

ZHOU Ya-dong1, 2, DENG An3, LU Qun1, 2   

  1. 1. Department of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, China; 2. Key Laboratory of Soft Soils and Engineering Environment of Tianjin Province, Tianjin Chengjian University, Tianjin 300384, China; 3. School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide 5005, Australia
  • Received:2017-08-30 Online:2018-05-11 Published:2018-06-12
  • Supported by:

    This work was supported by the National Nature Science Fund of China (51608351) and the Tianjin Research Program of Application Foundation and Advanced Technology (15JCYBJC48900).

摘要: 基于分段线性差分法,建立了一种非饱和土一维大变形固结模型。该模型可考虑土性参数非线性变化,可计算与分析大变形问题,并编制了Fortran计算程序。在现有解答和试验数据的基础上,对该模型进行了验证,瞬时加载情况下模型数值解与现有解答基本吻合,考虑加载过程下的数值解与试验数据吻合。进行了大变形算例分析,对比了加荷压密与消散固结阶段土层变形,探讨了孔隙气、水渗透系数比对土层沉降量、饱和度和不同应变情况下固结度的影响规律,分析了非饱和土大、小变形固结理论计算孔隙水(气)压和沉降量的差异。

关键词: 非饱和土, 非线性, 大变形, 一维固结, 沉降量

Abstract: This paper presents a model developed for one-dimensional consolidation of unsaturated soil. This model uses the piece-linear finite difference approach and considers soil nonlinearity and large strain problems. Fortran programming package is used to implement the computation of the model. This model is verified by analytical solutions and experimental results. The numerical solution of this model agrees with the existing solutions in the case of instantaneous loading. In process of loading, the approximation of consolidation settlement obtained by this model is in good agreement with the test results. Then this model is implemented for a large strain consolidation. The case study compares the settlement occurred at the instantaneous deforming stage and the subsequent consolidation stage. The case study also investigates the effect of the pore air permeability to the hydraulic conductivity ratio on soil layer settlement, saturation degree, and consolidation degree of different strain. It also analyzes the difference of pore water (air) pressures and soil layer settlement on large and small deformation consolidation theory of unsaturated soil.

Key words: unsaturated soil, nonlinear, large strain, one-dimensional consolidation, settlement

中图分类号: 

  • TU 411

[1] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[2] 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251.
[3] 陈昊, 胡小荣. 非饱和土三剪强度准则及验证[J]. 岩土力学, 2020, 41(7): 2380-2388.
[4] 喻昭晟, 陈晓斌, 张家生, 董亮, ABDOULKADER M S. 粗颗粒土的静止土压力系数非线性分析与计算方法[J]. 岩土力学, 2020, 41(6): 1923-1932.
[5] 文伟, 赖远明, 尤哲敏, 李积锋, . 基于Pitzer离子模型的盐渍非饱和土孔隙 相对湿度计算[J]. 岩土力学, 2020, 41(6): 1944-1952.
[6] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[7] 李佳龙, 李钢, 于龙. 隔离非线性平面应变单元模型及其 在Drucker-Prager模型中的应用[J]. 岩土力学, 2020, 41(5): 1492-1501.
[8] 江留慧, 李传勋, 杨怡青, 张锐. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590.
[9] 柳鸿博, 周凤玺, 岳国栋, 郝磊超. 非饱和土中热弹性波的传播特性分析[J]. 岩土力学, 2020, 41(5): 1613-1624.
[10] 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122.
[11] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
[12] 师旭超, 孙运德. 线性卸荷作用下软土超孔隙水压力 变化规律分析[J]. 岩土力学, 2020, 41(4): 1333-1338.
[13] 李华, 李同录, 江睿君, 范江文. 基于滤纸法的非饱和渗透性曲线测试[J]. 岩土力学, 2020, 41(3): 895-904.
[14] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[15] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!