岩土力学 ›› 2019, Vol. 40 ›› Issue (3): 942-950.doi: 10.16285/j.rsm.2017.1831

• 基础理论与实验研究 • 上一篇    下一篇

动力扰动下全长黏结锚杆的力学响应特性

吴秋红1, 2,赵伏军3,王世鸣4,周志华5,王 斌3,李 玉3   

  1. 1. 湖南科技大学 南方煤矿瓦斯与顶板灾害预防控制安全生产重点实验室,湖南 湘潭 411201;2. 湖南科技大学 煤矿安全开采技术湖南省重点实验室,湖南 湘潭 411201;3. 湖南科技大学 资源环境与安全工程学院,湖南 湘潭 411201;4. 湖南科技大学 土木工程学院,湖南 湘潭 411201; 5. 湖南科技大学 机电工程学院,湖南 湘潭 411201
  • 收稿日期:2017-09-05 出版日期:2019-03-11 发布日期:2019-04-04
  • 作者简介:吴秋红,男,1985年生,博士,讲师,主要从事采矿工程和岩石力学方面的教学与研究工作。
  • 基金资助:
    国家自然科学基金资助项目(No.51474103,No.51674116,No.51504092)。

Mechanical response characteristics of full grouted rock bolts subjected to dynamic loading

WU Qiu-hong1, 2, ZHAO Fu-jun3, WANG Shi-ming4, ZHOU Zhi-hua5, WANG Bin3, LI Yu3   

  1. 1. Work Safety Key Lab. on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; 2. Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; 3. School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; 4. School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; 5. School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
  • Received:2017-09-05 Online:2019-03-11 Published:2019-04-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51474103, 51674116, 51504092).

摘要: 深部岩体工程中,锚杆在围岩变形后处于高承载应力状态,受到爆破振动、矿震等动载荷作用后极易失效,因此,亟待研究动力扰动下锚杆的力学响应机制。基于SHPB试验平台,自行研发了一套研究锚杆动力响应的试验装置,开展动力扰动下全长黏结锚杆的力学响应特性研究。结果表明:初始动载荷作用下锚杆滑移量随着入射能的增加而增加,锚杆中应力波的波峰值随着传播距离的增加而逐渐减小,当应力波传播至锚杆最里端时,应力波峰值衰减较大;第2次动载荷后锚杆SG1处与SG2处应力波峰值差明显比第1次减小,表明动载荷下锚固界面从锚杆外端开始损伤;锚杆失效与锚固界面损伤有关,锚杆承载后初次受到动载荷的影响导致锚固界面产生损伤,损伤锚固段又受到外部载荷(如二次冲击、岩体挤压)作用时会进一步劣化,其不能抵抗围岩的变形而失效。研究结果为揭示锚杆支护失效行为,采取合理的设计与施工提供新的思路。

关键词: 动力扰动, 高应力, 分离式霍普金森压杆, 全长黏结锚杆, 力学响应

Abstract: Since the rockbolt is in the state of high bearing stress after the deformation of surrounding rock, it is easily to fail due to blasting vibration, earthquake and other dynamic loads in the deep rock mass engineering. Therefore, it is urgent to study the mechanical response mechanism of the bolt under dynamic disturbance. Based on the SHPB system, a set of testing equipment was developed for studying the dynamic response of bolts. Then the mechanical response characteristics of full-length bonded bolts were investigated under dynamic disturbance. The slippage of bolt increased with the increase of the incident energy at initial dynamic load, and the peak value of stress wave decreased with the increase of propagation distance. When the stress wave propagated to the farthest end of bolt, the peak value of stress wave decreased greatly. After the second dynamic load, the peak difference of stress wave between strain gauge SG1 and strain gauge SG2 was obviously smaller than that at the first time. This result indicates that the anchorage interface begins to damage from the outside of the anchor under the dynamic load. The failure of the anchor is related to the damage of the anchor interface. The anchorage interface is damaged after the first time loading. Then the damaged anchor bolt will be further deteriorated by the external load (such as secondary impact and rock mass extrusion). As a result, it can not resist the deformation of surrounding rock and fail. The research results provide new ideas for revealing the failure behavior of the supporting bolt and adopting the reasonable design and construction.

Key words: dynamic disturbance, high stress, separated Hopkinson pressure bar(SHPB), full grouted rock bolt, mechanical response

中图分类号: 

  • TU 470
[1] 朱才辉, 兰开江, 段宇, 贺红, . 西安地铁“先隧后井”法横通道施工控制技术研究[J]. 岩土力学, 2020, 41(S1): 379-386.
[2] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[3] 蒋中明, 李鹏, 赵海斌, 冯树荣, 唐栋, . 压气储能浅埋地下储气库性能试验研究[J]. 岩土力学, 2020, 41(1): 235-241.
[4] 翁永红, 张练, 徐唐锦, 黄书岭, 丁秀丽, . 高水头下大型导流洞新型堵头-围 岩相互作用规律与安全评价[J]. 岩土力学, 2020, 41(1): 242-252.
[5] 宫凤强, 伍武星, 李天斌, 司雪峰, . 深部硬岩矩形隧洞围岩板裂破坏的试验模拟研究[J]. 岩土力学, 2019, 40(6): 2085-2098.
[6] 李建朋, 高岭, 母焕胜. 高应力卸荷条件下砂岩扩容特征及其剪胀角函数[J]. 岩土力学, 2019, 40(6): 2119-2126.
[7] 魏久淇, 吕亚茹, 刘国权, 张 磊, 李 磊, . 钙质砂一维冲击响应及吸能特性试验[J]. 岩土力学, 2019, 40(1): 191-198.
[8] 董志宏, 丁秀丽, 黄书岭, 邬爱清, 陈胜宏, 周 钟, . 高地应力区大型洞室锚索时效受力特征 及长期承载风险分析[J]. 岩土力学, 2019, 40(1): 351-362.
[9] 王朋飞,冯国瑞,赵景礼,Yoginder P. Chugh ,王志强,. 长壁工作面巷顶沿空掘巷围岩应力分析[J]. , 2018, 39(9): 3395-3405.
[10] 赵金帅,冯夏庭,王鹏飞,江 权,陈炳瑞,周扬一,裴书锋, . 爆破开挖诱发的地下交叉洞室微震特性及破裂机制分析[J]. , 2018, 39(7): 2563-2573.
[11] 张传庆,高 阳,刘 宁,周 辉,冯夏庭, . 深埋隧洞力学响应监测与测试设计的思考[J]. , 2018, 39(7): 2626-2631.
[12] 赵金帅,冯夏庭,江 权,陈炳瑞,肖亚勋,胡 磊,丰光亮,李鹏翔,. 分幅开挖方式下高应力硬岩地下洞室的微震特性及稳定性分析[J]. , 2018, 39(3): 1020-1026.
[13] 司雪峰, 宫凤强,罗 勇,李夕兵, . 深部三维圆形洞室岩爆过程的模拟试验[J]. , 2018, 39(2): 621-634.
[14] 张 强,李小春,胡少斌,牛智勇,汪 芳,范 坤,邵光强,. 高应力下花岗岩耦合节理在剪切过程中渗透率演化特性[J]. , 2018, 39(10): 3641-3650.
[15] 谢 涛,罗 强,周 成,张 良,蒋良潍, . 高速铁路小变形下陡坡地基路肩桩板墙力学响应[J]. , 2018, 39(1): 45-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!