岩土力学 ›› 2019, Vol. 40 ›› Issue (6): 2039-2049.doi: 10.16285/j.rsm.2017.1861

• 基础理论与实验研究 • 上一篇    下一篇

低强高脆岩爆模型材料配比试验研究

周辉1, 2,陈珺1, 2,张传庆1, 2,朱勇1, 2,卢景景1, 2,姜玥1, 2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049
  • 收稿日期:2017-09-11 出版日期:2019-06-11 发布日期:2019-06-20
  • 作者简介:周辉,男,1972年生,博士,研究员,博士生导师,主要从事岩石力学试验、理论、数值分析与工程安全性分析方面的研究工作
  • 基金资助:
    国家自然科学基金(No.51427803,No.51409102);国家重点基础研究发展计划(973计划)项目(No.2014CB046902);中国科学院科研仪器设备研制项目(No.YZ201553,No.YZ201344)。

Experimental study of the rockburst model material with low-strength and high-brittleness

ZHOU Hui1, 2, CHEN Jun1, 2, ZHANG Chuan-qing1, 2, ZHU Yong1, 2, LU Jing-jing1, 2, JIANG Yue1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-09-11 Online:2019-06-11 Published:2019-06-20
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51427803, 51409102), the National Program on Key Basic Research Project of China (973 Program) (2014CB046902) and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (YZ201553, YZ201344).

摘要: 深部硬岩隧洞开挖卸荷常诱发高强度岩爆灾害,岩爆已成为影响隧洞工程安全建设的关键问题。物理模型试验作为研究深部隧洞开挖工程的重要手段之一,其材料的性质特征对试验结果影响很大,配制出适合开展岩爆物理模型试验的模型材料是研究的关键。在传统岩爆模型材料研制的基础上,通过引入岩爆倾向性指数和脆性评价指标,采用正交设计法和敏感性分析,开展低强度、高脆性的岩爆模型材料配比试验研究。试验选择石英砂含量、重晶石粉含量、高强石膏与水泥质量比和水含量4个影响因素,每个因素设置5个设计水平,共25组配比方案。每组配比方案均测定模型材料的强度、力学参数、岩爆倾向性指数和脆性评价指标,并研究这些参数和指标随4个影响因素在不同设计水平下的变化规律。最后,针对挑选出的岩爆模型材料,分析讨论了各影响因素与岩爆倾向性、脆性之间的相互关系。试验结果表明:基于岩爆倾向性指数和脆性评价指标,所配制的岩爆模型材料满足物理模型试验要求;配制岩爆模型材料重点要控制重晶石粉和水的含量,并合理调节高强石膏与水泥质量比。

关键词: 脆性岩石, 岩爆, 模型材料, 脆性指标

Abstract: The excavation unloading activities in deep hard rock tunnels often induce high-intensity rockburst disasters, which has become a key issue affecting the safety construction of tunnels. The physical model test is an important method to study the deep tunnel excavation, and the properties of model materials have great influences on the testing results. Thus, it is the key to prepare materials suitable for the physical model test. Based on the development of the traditional rockburst model materials, this paper introduces the rockburst proneness index and brittleness evaluation index. Combing with the orthogonal design method and sensitivity analysis, the experiments were carried out to investigate the rockburst model materials with low-strength and high-brittleness. We analyzed five influencing factors, including the quartz sand content, barite content, water content and the mass ratio of high-strength gypsum and cement. Each factor was set at five levels, a total of 25 matching schemes. The material strength, mechanical parameters, rockburst proneness index and brittleness evaluation index of model materials were measured in each matching scheme, and the variation of these parameters and indexes were studied under different design levels. Finally, the relationships among the influencing factors, rockburst proneness and brittleness of the selected rockburst model materials were discussed. The results show that: 1) According to the rockburst proneness index and brittleness evaluation index, the prepared model materials meet the requirements of the physical model tests. 2) It is important to control the contents of barite powder and water and to adjust the mass ratio of high-strength gypsum to cement properly.

Key words: brittle rock, rockburst, model material, brittleness index

中图分类号: 

  • TU 451
[1] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[2] 陈炳瑞, 冯夏庭, 符启卿, 王搏, 朱新豪, 李涛, 陆菜平, 夏欢, . 综合集成高精度智能微震监测技术 及其在深部岩石工程中的应用[J]. 岩土力学, 2020, 41(7): 2422-2431.
[3] 陈炳瑞, 吴昊, 池秀文, 刘辉, 伍梦蝶, 晏俊伟, . 基于STA/LTA岩石破裂微震信号实时识 别算法及工程应用[J]. 岩土力学, 2019, 40(9): 3689-3696.
[4] 李桐, 冯夏庭, 王睿, 肖亚勋, 王勇, 丰光亮, 姚志宾, 牛文静, . 深埋隧道岩爆位置偏转及其微震活动特征[J]. 岩土力学, 2019, 40(7): 2847-2854.
[5] 赵振华, 张晓君, 李晓程, . 含卸压孔硬岩应力松弛特性试验研究[J]. 岩土力学, 2019, 40(6): 2192-2199.
[6] 苏国韶, 燕思周, 闫召富, 翟少彬, 燕柳斌, . 真三轴加载条件下岩爆过程的声发射演化特征[J]. 岩土力学, 2019, 40(5): 1673-1682.
[7] 罗丹旎, 苏国韶, 何保煜, . 不同饱水度花岗岩的真三轴岩爆试验研究[J]. 岩土力学, 2019, 40(4): 1331-1340.
[8] 严 健, 何 川, 汪 波, 蒙 伟, . 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550.
[9] 梅诗明, 胡小川, 苏国, 陈冠言, . 中间主应力对隧洞岩爆影响的模型试验研究[J]. 岩土力学, 2019, 40(10): 3959-3968.
[10] 赵 菲, 王洪建, 何满潮, 袁广祥, 罗耀武, . 不同高度花岗岩岩爆试验的声发射特征[J]. 岩土力学, 2019, 40(1): 135-146.
[11] 王之东, 黎立云, 陈 滔, 刘兵权, . 矿柱岩爆模型试验中能量释放研究[J]. 岩土力学, 2018, 39(S2): 177-185.
[12] 向 鹏,纪洪广,蔡美峰,张月征. 抛掷型岩爆震源体能量动态释放机制与几何尺度特征[J]. , 2018, 39(2): 457-466.
[13] 司雪峰, 宫凤强,罗 勇,李夕兵, . 深部三维圆形洞室岩爆过程的模拟试验[J]. , 2018, 39(2): 621-634.
[14] 马春驰,李天斌,张 航,王剑锋, . 基于EMS微震参数的岩爆预警方法及探讨[J]. , 2018, 39(2): 765-774.
[15] 蒙 伟,何 川,汪 波,张钧博,吴枋胤,夏舞阳. 基于侧压力系数的岩爆区初始地应力场二次反演分析[J]. , 2018, 39(11): 4191-4200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!