›› 2018, Vol. 39 ›› Issue (S1): 159-166.doi: 10.16285/j.rsm.2017.2059

• 基础理论与实验研究 • 上一篇    下一篇

高强石膏材料配比研究及其在围岩试件(厚壁圆筒) 开挖卸荷试验中的应用

侯公羽1,李小瑞1,梁洪垚2,梁金平1,周蒙辉1,崔永科1   

  1. 1. 中国矿业大学(北京)力学与建筑工程学院,北京 100083;2. 北京市昌平区马池口镇政府,北京102200
  • 出版日期:2018-07-20 发布日期:2018-09-02
  • 作者简介:侯公羽,男,1965年生,博士,教授、博士生导师,主要从事岩土工程、岩石力学方面的教学与研究工作。
  • 基金资助:

    国家自然科学基金面上项目(No. 51574247);国家自然科学基金委员会煤炭联合基金重点支持项目(No. U1361210)。

Research on proportion of high strength gypsum materials and its application to excavation unloading test of surrounding rock specimen(thick wall cylinder)

HOU Gong-yu1, LI Xiao-rui1, LIANG Hong-yao2, LIANG Jin-ping1, ZHOU Meng-hui1, CUI Yong-ke1   

  1. 1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China; 2. The Government of Machikou Town, Changping District, Beijing 102200, China
  • Online:2018-07-20 Published:2018-09-02
  • Supported by:

    This work was supported by the National Science Foundation of China(51574247) and the National key project of National Natural Science Foundation and coal joint fund of China(U1361210).

摘要: 研究巷道(隧道)围岩的开挖卸荷效应的有效途径之一是进行小型围岩试件的开挖卸荷试验。为便于制备和掌控小型围岩试件的强度,首先选用高强石膏类材料进行了配比试验,获得了试件强度范围5~20 MPa所对应材料的配比,研究各相似材料成分对试件强度的影响规律。其次制作、加工了小型围岩试件(高290 mm、内径为100 mm、外径为200 mm厚壁圆筒型)。采用具有自主知识产权的巷道围岩开挖卸荷模型试验系统,对小型围岩试件进行了缓慢开挖卸荷和破坏的模拟试验。开挖卸荷过程在力学原理上可以模拟实际工程的开挖条件,即先对围岩试件施加轴压、外压和内压,以模拟原岩应力。开挖(即卸荷)时,卸载内压,保持其他两向压力不变。试验过程中采集到围岩试件轴向和切向两个方向的应变数据,获得了开挖卸荷全过程的应变–时间曲线及应变随内外压差的变化关系。试验结果表明,轴向应变和切向应变随卸荷幅度加大而逐渐增大,而且呈现内侧应变大于外侧,试件在卸荷过程中向内膨胀;同一测点其切向应变大于轴向应变。卸荷破坏时围岩试件破坏发展路径朝向洞内即沿径向发生破坏,破坏形态呈现分层破裂现象。

关键词: 高强石膏材料, 配比试验, 模型试验, 小型围岩试件, 开挖卸荷, 围岩变形

Abstract: One of the effective ways to study the excavation and unloading effect of roadway (tunnel) is to carry out excavation and unloading test of small-scale rock specimen. In order to make it easier to prepare and control the strength of the small surrounding rock speimens, firstly the high-strength gypsum-based materials are selected to carry out the ratio test. The proportion of the corresponding materials with the strength range of 5-20 MPa and the influence of the similar materials composition on the strength of the specimen is obtained. Secondly, a small wall rock specimen (thick wall cylinder type: 290 mm high, 100 mm with diameter, 200 mm outer diameter) is processed. The tunnel excavation unloading model test system with independent intellectual property rights has been used to simulate the unloading and failure of the surrounding rock specimens. The excavation unloading process can simulate the excavation conditions of the actual engineering on the principle of mechanics; that is, the axial compression, external pressure and internal pressure are applied to the surrounding rock specimen to simulate the original rock stress. Excavation (that is, when unloading), unloading the internal pressure and keep the other two pressure constant. During the test, the relationship between the strain in two directions along the axial direction and the tangential direction of the surrounding rock specimen is collected. The strain-time curve and the relationship between the strain and the pressure drop are obtained. And present: the inner strain is larger than the outer one and the specimen expands inward during unloading; at the same measuring point the tangential strain is larger than the axial strain playing a leading role. When the unloading damage occurs, the failure direction of the surrounding rock specimen destroys toward the inside of the cave, that is, along the radial direction. Failure pattern presents stratified rupture.

Key words: high strength gypsum material, mixture ratio test, model test, small surrounding rock specimen, excavation unloading, surrounding rock deformation

中图分类号: 

  • TU452

[1] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[2] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[3] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[4] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[5] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[6] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[7] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[8] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[9] 宁奕冰, 唐辉明, 张勃成, 申培武, 章广成, 夏丁, . 基于正交设计的岩石相似材料配比研究及 底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020.
[10] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[11] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[12] 汤明高, 李松林, 许 强, 龚正峰, 祝 权, 魏 勇. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.
[13] 宋丁豹, 蒲诃夫, 陈保国, 孟庆达, . 高填方减载式刚性涵洞受力特性模型试验研究[J]. 岩土力学, 2020, 41(3): 823-830.
[14] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[15] 侯公羽, 胡涛, 李子祥, 谢冰冰, 肖海林, 周天赐, . 基于分布式光纤技术的采动影响下覆岩 变形演化规律试验研究[J]. 岩土力学, 2020, 41(3): 970-979.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!