岩土力学 ›› 2019, Vol. 40 ›› Issue (4): 1507-1514.doi: 10.16285/j.rsm.2017.2448

• 岩土工程研究 • 上一篇    下一篇

堤坝脉动注浆浆液扩散机制及应用研究

张 聪1,梁经纬2,阳军生1,曹 磊3,谢亦朋1,张贵金4   

  1. 1. 中南大学 土木工程学院,湖南 长沙 410075;2. 湖南省水利水电科学研究院,湖南 长沙 410007; 3. 湖南水利水电职业技术学院,湖南 长沙 410131;4. 长沙理工大学 水利工程学院,湖南 长沙 410114
  • 收稿日期:2017-12-08 出版日期:2019-04-11 发布日期:2019-04-28
  • 通讯作者: 阳军生,男,1969年生,博士,教授,主要从事隧道及地下工程等方面的教学与科研工作。E-mail: jsyang@csu.edu.cn E-mail:zc8023cl@163.com
  • 作者简介:张聪,男,1988年生,博士研究生,主要从事岩土与地下工程方面的科研工作。
  • 基金资助:
    湖南水利水电职业技术学院院级课题(No. KY1302);湖南省自然科学基金青年基金项目(No. 2019JJ50336)。

Research on the diffusion mechanism and application of pulsate grouting in embankment and dam

ZHANG Cong1, LIANG Jing-wei2, YANG Jun-sheng1, CAO Lei3, XIE Yi-peng1, ZHANG Gui-jin4   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. Hunan Water Resources and Hydropower Research Institute, Changsha, Hunan 410007, China; 3. Hunan Polytechnic of Water Resources and Electric Power, Changsha, Hunan 410131, China; 4. School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
  • Received:2017-12-08 Online:2019-04-11 Published:2019-04-28
  • Supported by:
    This work was supported by the Research Funds for the Hunan Polytechnic of Water Resources and Electric Power (KY1302) and the Natural Science Foundation of Hunan Province of China (2019JJ50336).

摘要: 基于脉动注浆泵可输出低频周期性脉冲压力的特点,结合可控性黏土固化浆液,提出了一种可用于堤坝防渗加固的新方法。通过进行原型试验验证了该方法的可行性,考虑钻孔扰动和脉动低频重复压力对地层渗透特性的影响,推导了黏土固化浆液脉动扩散方程,运用多场耦合软件COMSOL探讨了脉动压力下黏土固化浆液扩散的机制,最后将研究成果成功应用于南水北调中线鹤壁段引水渠道边坡帷幕注浆工程。研究结果表明:黏土固化浆液脉动控制注浆技术可显著提高地层连续性和整体性,结石体28 d强度大于2 MPa,渗透系数可降至10?5 cm/s左右,浆液在注浆孔附近与土体胶结成块,邻近注浆孔浆脉交错搭接,整体表现为空间立体网状包裹结构的防渗墙体;对数值模拟和现场试验结果进行综合分析,堤坝脉动注浆时间应控制在1 800~2 400 s之间,合理的脉动注浆压力在0.2~2 MPa之间,脉动持续时间宜调至4~8 s,脉动间隔时间宜调至2~6 s,这样有利于保证堤坝脉动注浆工程达到最优的防渗加固效果;工程实践的渠道边坡连续性、整体性得到了改善,注浆止水加固效果显著,检查孔渗透系数降至10?5 cm/s,所取芯样完整,芯样最长可达40 cm。

关键词: 堤坝, 脉动注浆, 黏土固化浆液, 原型试验, 数值模拟, 南水北调工程

Abstract: Based on the characteristics of low frequency periodic pulse pressure, a new method was proposed for seepage control and reinforcement of a dam. A prototype test of a manmade homogeneous embankment demonstrated that the method, considering drilling disturbances and repetitive pulsating pressure on the permeability of strata, was feasible. The clay-cement slurry pulsation diffusion equation was determined using the multi-coupling software COMSOL to investigate the mechanism of fluctuating pressure under the clay-cement slurry diffusion. Finally, this research was successfully applied to the Hebi section of the middle route water diversion channel along the grout curtain slope. The results showed that the 28-day strength of stone was greater than 2 MPa and the permeability coefficient was reduced to approximately 10?5 cm/s, demonstrating that the clay-cement slurry pulsation control grouting technology can significantly improve the stratigraphic continuity. Observations were made on the slurry in the grouting hole near the soil and cement block, the adjacent grouting hole slurry vein staggered lap joint, and the overall performance of the impervious wall space of the three-dimensional structure. Based on a comprehensive analysis of the numerical simulation and the field test results, the dam grouting time fluctuation should remain between 1 800 s and 2 400 s, a reasonable grouting pressure pulsation should be between 0.2 MPa and 2 MPa, the pulse duration should be between 4 s and 8 s, and the pulse interval time should be adjusted to between 2 s and 6 s. These values ensure that the seepage and the reinforcement of the dam grouting remain in optimal engineering ranges. The channel slope continuity and integrity were improved, and significant improvement was noted for grout reinforcement sealing. The coefficient was reduced to 10?5 cm/s, and the core sample remained as a whole with the length up to 40 cm.

Key words: dam, pulsating grouting, clay solidified slurry, prototype test, numerical simulation, South to North Water Diversion Project

中图分类号: 

  • TU 457
[1] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[2] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[3] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[4] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[5] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[6] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[7] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[8] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[9] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[10] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[11] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[12] 刘祖强, 罗红明, 郑敏, 施云江, . 南水北调渠坡膨胀土胀缩特性及变形模型研究[J]. 岩土力学, 2019, 40(S1): 409-414.
[13] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[14] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[15] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!