›› 2018, Vol. 39 ›› Issue (11): 4278-4286.doi: 10.16285/j.rsm.2018.0239

• 测试技术 • 上一篇    下一篇

土体拉伸破坏过程微细结构变化测试系统研发与应用

崔 猛1, 2,刘 洁3,韩尚宇4,洪宝宁2   

  1. 1. 南昌工程学院 土木与建筑工程学院,江西 南昌 330099;2. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098; 3. 南昌工程学院 外国语学院,江西 南昌330099;4. 南昌航空大学 土木建筑学院,江西 南昌 330063
  • 收稿日期:2018-02-09 出版日期:2018-11-10 发布日期:2018-11-15
  • 作者简介:崔猛,男,1986 年生,博士,讲师,主要从事土体拉伸损伤与微细观测试技术等方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No. 51609114);河海大学岩土力学与堤坝工程教育部重点实验室开放基金项目(No.2016001);江西省教育厅基金项目(No. GJJ161101)。

Development and application of microstructure change test system for soil tensile failure process

CUI Meng1, 2, LIU Jie3, HAN Shang-yu4, HONG Bao-ning2   

  1. 1. College of Civil and Structure Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China; 2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 3. College of Foreign Language, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China; 4. College of Engineering and Architecture, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
  • Received:2018-02-09 Online:2018-11-10 Published:2018-11-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51609114), the Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University (2016001) and the Education Department of Jiangxi Province (GJJ161101).

摘要: 针对目前土体拉伸测试水平的不足,研发了一套土体拉伸破坏过程微细结构变化测试系统,主要由拉伸加载装置、图像采集装置、图像处理程序3部分组成。拉伸加载装置为测试系统提供均匀、稳定的外部荷载和观测面;图像采集装置可利用跟踪平台连续拍摄拉伸过程中不同应力状态下的微细观结构图像,并利用基于数字散斑相关法的相对位移场计算,通过预拉伸可确定断裂带演化区域,即观测区域;图像处理程序可对所拍摄图像进行增强、融合、拼接、分割处理,并对图像中孔隙与颗粒的量化特征参数进行提取。基于所研发的测试系统开展了黏性土拉伸破坏的微细观试验,研究结果表明:黏性土在整个拉伸破坏过程中,颗粒结构调整在先,孔隙演化在后,孔隙的形成与贯通将最终导致试样的拉伸破坏;孔隙度与孔隙分布分维随拉伸变形量的增加而增长,颗粒分布分维随拉伸变形量的增加而降低,但均表现有相似的阶段性,据此可将整个拉伸破坏过程划分为孔隙的萌生、发展、贯通3个阶段。

关键词: 土体拉伸, 微细结构, 测试系统, 图像处理, 量化特征参数

Abstract: To improve the level of soil tensile testing, a set of microstructure change test system for soil tensile failure process is developed. The system consists of soil tensile loading device, image acquisition device and image processing program. Tension loading device provides uniform and stable external force and observation surface. Image acquisition device can continuously take the microscopic structure images under different stress states during the entire stretching process by the use of tracking platform, and determine the evolution area of tensile fracture zone (i.e., the observation area) using relative displacement field calculation based on the digital speckle correlation method. Image processing program includes enhancement, fusion, splicing and segmentation of the captured images, as well as the extraction of quantitative feature parameters of soil particles and pores. Based on the developed test system, the tensile failure test of clay is carried out. The results show that the particle structure changes first, and then the pores evolves during the whole process of tensile failure. The formation and penetration of the pores eventually lead to tensile failure of the sample. The porosity and fractal dimension distribution of pores increase with the amount of tensile deformation, and the fractal dimension distribution of particles decreases with the increase of tensile deformation, both can be divided into different stages. To be specific, the entire process of tensile failure can be divided into three stages: initiation, development and breakthrough of the fracture zone.

Key words: soil tensile, microstructure, test system, image processing, quantitative feature parameters

中图分类号: 

  • TU 411

[1] 大久保诚介, 汤 杨, 许江, 彭守建, 陈灿灿, 严召松, . 3D-DIC系统在岩石力学试验中的应用[J]. 岩土力学, 2019, 40(8): 3263-3273.
[2] 尹晓萌, 晏鄂川, 王鲁男, 陈 利, . 各向异性片岩的微观组构信息定量 提取与断面形貌特征分析[J]. 岩土力学, 2019, 40(7): 2617-2627.
[3] 郎颖娴, 梁正召, 段 东, 曹志林, . 基于CT试验的岩石细观孔隙模型重构与并行模拟[J]. 岩土力学, 2019, 40(3): 1204-1212.
[4] 王东伟, 陆武萍, 唐朝生, 赵红崴, 李胜杰, 林銮, 冷挺, . 砂土微观结构样品制备技术及量化方法研究[J]. 岩土力学, 2019, 40(12): 4783-4792.
[5] 王步雪岩, 孟庆山, 韦昌富, 谌民, 阎钶, 张珀瑜, . 多投影面下珊瑚砂砾颗粒形貌量化试验研究[J]. 岩土力学, 2019, 40(10): 3871-3878.
[6] 黄 伟,项 伟,王菁莪,程超杰,崔德山,刘清秉,. 基于变形数字图像处理的土体拉伸试验装置的研发与应用[J]. , 2018, 39(9): 3486-3494.
[7] 夏加国,高 玮,程雅星,胡瑞林,徐佩芬,隋皓月, . 土石混合体斜坡地质结构精细探测新途径及其应用[J]. , 2018, 39(8): 3087-3094.
[8] 周 辉,陈 珺,卢景景,张传庆,胡大伟,孟凡震,姜 玥, . 岩石多功能剪切试验测试系统研制[J]. , 2018, 39(3): 1115-1122.
[9] 付 茹,胡新丽,周 博,汪华斌,王剑峰,. 砂土颗粒三维形态的定量表征方法[J]. , 2018, 39(2): 483-490.
[10] 罗 岚,夏唐代,仇浩淼, . K0条件下颗粒形状特征对砂土剪切模量的影响[J]. , 2018, 39(10): 3695-3702.
[11] 孙凯强,唐朝生,刘昌黎,李昊达,王 鹏,冷 挺. 土体龟裂研究方法[J]. , 2017, 38(S1): 11-26.
[12] 王培涛,任奋华,谭文辉,闫振雄,蔡美峰,杨天鸿,. 单轴压缩试验下粗糙离散节理网络模型建立及力学特性[J]. , 2017, 38(S1): 70-78.
[13] 孙德安,黄丁俊. 干湿循环下南阳膨胀土的土水和变形特性[J]. , 2015, 36(S1): 115-119.
[14] 安晨昊,徐金明,孙 皓,刘 芳. 单轴压缩条件下花岗岩中不同矿物的形状变化[J]. , 2015, 36(S1): 471-476.
[15] 尹延春 ,赵同彬,谭云亮 ,于凤海 , . 基于Otsu图像处理的岩石细观模型重构及数值试验[J]. , 2015, 36(9): 2532-2540.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!