›› 2018, Vol. 39 ›› Issue (8): 3077-3086.doi: 10.16285/j.rsm.2018.0275

• 测试技术 • 上一篇    下一篇

软岩水-力耦合的流变损伤多尺度力学试验系统的研制

刘 镇1, 2,周翠英1, 2,陆仪启1, 2,林振镇1, 2,梁彦豪1, 2,葛星星1, 2,何新甫1, 2   

  1. 1. 中山大学 土木工程学院,广东 广州 501275;2. 中山大学 广东省重大基础设施安全工程技术研究中心,广东 广州 510275
  • 收稿日期:2018-02-26 出版日期:2018-08-11 发布日期:2018-09-02
  • 通讯作者: 周翠英,女,1963年生,博士,教授,博士生导师,主要从事岩土力学与工程方面的研究工作。E-mail:zhoucy@mail.sysu.edu.cn E-mail:liuzh8@mail.sysu.edu.cn
  • 作者简介:刘镇,男,1981年生,博士,副教授,博士生导师,主要从事岩土力学与工程方面的研究工作。
  • 基金资助:

    国家自然科学基金(No. 41530638, No. 41030747, No. 41227002, No. 41372302, No. 41472257)。

Development of the multi-scale mechanical experimental system for rheological damage effect of soft rock bearing the hydro-mechanical coupling action

LIU Zhen1, 2, ZHOU Cui-ying1, 2, LU Yi-qi1, 2, LIN Zhen-zhen1, 2, LIANG Yan-hao1, 2, GE Xing-xing1, 2, HE Xin-fu1,2   

  1. 1. School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; 2. Guangdong Engineering Research Center for Major Infrastructures Safety, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
  • Received:2018-02-26 Online:2018-08-11 Published:2018-09-02
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41530638, 41030747, 41227002, 41372302, 41472257).

摘要: 水-力耦合流变损伤试验是揭示软岩灾变机制的重要途径,其瓶颈在于缺乏能模拟工程实际环境条件的大型室内试验设备及其对全过程精确跟踪的多尺度量测技术。为此,根据力学控制与智能优化原理,设计了基于高强透明材料的压力室,结合伺服控制、非接触三维量测与协同集成技术等,研制了软岩水-力耦合的流变损伤多尺度力学试验系统,重点包括全通透高压动静水压力室、多元同步三轴加载系统、高围压光纤传感实时量测系统、内外流变损伤多尺度三维成像系统、多元异构量测数据同步快速处置系统等。通过软硬件集成,研制成功了样机。该系统可模拟重现高压动/静水及其他工作液体环境条件下软岩水-应力耦合软化破坏全过程,可开展同一时段内多种不同溶液、不同压力、不同流变阶段的软岩流变损伤试验,实现高精度无损量测与多尺度观测。通过应用,获得了软岩应力-应变曲线、内部损伤演化、表面各点应变变化及表面损伤演化等数据,并重构了内外损伤演化过程,将重构图像与实际岩样变化对比,验证了本试验系统的可靠性,为捕捉软岩灾变全过程与深入研究提供了试验技术支持。

关键词: 软岩, 水-力耦合, 流变损伤, 多尺度, 力学试验系统

Abstract: The experiment of hydro-mechanical coupling rheological damage is an important means to reveal the catastrophic mechanism of soft rock. However, the limitations of this experiment are in the lack of large-scale experimental apparatus that can simulate the actual engineering environmental conditions and its multi-scale measurement technology for accurately tracking the entire process. Hence, a pressure chamber was designed by applying high-strength transparent materials, according to the principles of mechanical control and intelligent optimisation. Combining with servo control, non-contact 3D measurement and synergetic integration technology, a multi-scale mechanical testing system was developed for studying the hydro-mechanical coupling rheological damage of soft rock. This system mainly includes the full transparent chamber with high dynamic/static water pressure, the multi-phase synchronous-loading triaxial system, a real-time measurement system embedded the fiber optic sensing technology under high confining pressure, a multi-scale three-dimensional imaging system for the observation of internal and external rheological damage and a synchronous and rapid system for processing the spatial measurement data. Thus, a prototype machine was successfully developed using the integration of hardware and software. This system can simulate the whole process of hydro-mechanical coupling soften damage of soft rock under the conditions of high pressure dynamic/static water and other working fluids. Besides, it also can carry out a variety of soft rock rheological damage tests with different solutions, pressures and rheological stages. Thus, both high-precision non-destructive measurement and multi-scale observation were achieved in the same period. The stress-strain curves, internal damage evolution, surface strain changes and surface damage evolution of soft rock were obtained through application. Internal and external damage evolution processes were reconstructed, and their reconstructed images were further compared with the changes of actual rock samples. The results indicate that the reliability of the testing system was verified. This study provides experimental technical support for the capture of the whole process and in-depth study of soft rock disaster.

Key words: soft rock, hydro-mechanical coupling, rheological damage, multi-scale, mechanical experiment system

中图分类号: 

  • TU 458

[1] 田云, 陈卫忠, 田洪铭, 赵明, 曾春涛. 考虑软岩强度时效弱化的缓冲层让压支护设计研究[J]. 岩土力学, 2020, 41(S1): 237-245.
[2] 蔡改贫, 宣律伟, 张雪涛, 郭晋. 多尺度内聚颗粒模型破碎过程研究[J]. 岩土力学, 2020, 41(6): 1809-1817.
[3] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[4] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
[5] 周翠英, 孔令华, 崔光俊, 于磊, 刘镇, . 基于天然红层材料的软岩成型模拟研究[J]. 岩土力学, 2020, 41(2): 419-427.
[6] 周翠英, 梁宁, 刘镇, . 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学, 2019, 40(S1): 21-31.
[7] 雷江, 陈卫忠, 李翻翻, 于洪丹, 马永尚, 谢华东, 王富刚, . 引红济石引水隧洞围岩力学特性研究[J]. 岩土力学, 2019, 40(9): 3435-3446.
[8] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[9] 周翠英, 黄思宇, 刘镇, 陆仪启, . 红层软岩软化的界面过程及其动力学模型[J]. 岩土力学, 2019, 40(8): 3189-3196.
[10] 储昭飞, 刘保国, 任大瑞, 宋宇, 马强, . 软岩流变相似材料的研制及物理模型试验应用[J]. 岩土力学, 2019, 40(6): 2172-2182.
[11] 贺桂成, 廖家海, 李丰雄, 王 昭, 章求才, 张志军. 水饱和边坡夹层热-孔隙水-力耦合作用模型及应用[J]. 岩土力学, 2019, 40(5): 1663-1672.
[12] 杨宗佶, 蔡 焕, 雷小芹, 王礼勇, 丁朋朋, 乔建平, . 非饱和地震滑坡堆积体降雨破坏水-力 耦合行为试验[J]. 岩土力学, 2019, 40(5): 1869-1880.
[13] 杨骐莱, 熊勇林, 张 升, 刘干斌, 郑荣跃, 张 锋, . 考虑温度影响的软岩弹塑性本构模型[J]. 岩土力学, 2019, 40(5): 1898-1906.
[14] 孙广臣, 谢佳佑, 何 山, 傅鹤林, 江学良, 郑 亮, . 不同方向地震激励下软岩桥隧 搭接段动力响应研究[J]. 岩土力学, 2019, 40(3): 893-902.
[15] 陈卫忠, 李翻翻, 马永尚, 雷 江, 于洪丹, 邢天海, 郑有雷, 贾晓东, . 并联型软岩温度-渗流-应力耦合三轴流变仪的研制[J]. 岩土力学, 2019, 40(3): 1213-1220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!