岩土力学 ›› 2019, Vol. 40 ›› Issue (5): 1925-1931.doi: 10.16285/j.rsm.2018.0390

• 基础理论与实验研究 • 上一篇    下一篇

页岩I型断裂韧性的分形计算方法与应用

纪国法1, 2,李奎东3,张公社1, 2,李少明3,张 蕾3,刘 炜3   

  1. 1. 长江大学?油气资源与勘探技术教育部重点实验室,湖北 武汉 430100;2. 长江大学?非常规油气湖北省协同创新中心,湖北 武汉 430100; 3. 中石化江汉油田分公司石油工程技术研究院,湖北 武汉 430035
  • 收稿日期:2018-03-18 出版日期:2019-05-11 发布日期:2019-06-02
  • 作者简介:纪国法,男,1985年生,博士,教师,主要从事非常规油气储层改造、水合物开采与防治、采油采气等方面的教学与科研工作。
  • 基金资助:
    国家自然科学基金(No. 51804042);长江大学油气资源与勘探技术教育部重点实验室开放基金(No. K2018-09);湖北省教育厅科学研究计划资助项目(No. Q20181313);长江大学青年科研支持计划长江青年基金(No. 2016cqn045)

Fractal calculation method of model I fracture toughness of shale rock and its application

JI Guo-fa1, 2, LI Kui-dong3, ZHANG Gong-she1, 2, LI Shao-ming3, ZHANG Lei3, LIU Wei3   

  1. 1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, Hubei 430100, China; 2. Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, Hubei 430100, China; 3. Petroleum Engineering Technology Research Institute of Jianghan Oilfield Branch of SINPEC, Wuhan, Hubei 430035, China
  • Received:2018-03-18 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51804042), the Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University (K2018-09), the Scientific Research Plan Launched by Hubei Provincial Department of Education (Q20181313) and the Young Scientific Researchers in Yangtze University (2016cqn045).

摘要: 水平井分段体积压裂是页岩气商业规模开发的重要工艺措施,如何评价页岩储层可压性是该工艺成功的关键。页岩断裂韧性是可压性评价的重要支撑参数,从I型断裂裂纹(裂缝)微观形态入手,结合断裂力学理论和分形理论,建立了页岩I型断裂韧性分形计算方法;借助晶体劈裂功法计算页岩表面能,采用密度、声波时差2种参数获取计算结果,对比分析新的分形方法计算数据、传统方法预测数据与试验测试数据,新的分形方法计算平均误差为3.63%,传统预测方法平均误差为 %,验证了方法的准确性;参考实例水平井测井解释数据,计算了水平段I型断裂韧性指数的全井筒连续性剖面,结合可压性级别与较大储层改造体积概率关系,优选可压性级别为III级及II级改造。建立的页岩I型断裂韧性分形计算方法对定量评价页岩储层可压性具有重要意义。

关键词: 页岩, I型断裂, 断裂韧性, 分形, 断裂韧性指数

Abstract: Shale gas development in commercial scale benefits from the key technology— staged fracturing of horizontal wells, and the evaluation of shale fracability is also the key for the technology. Shale fracture toughness is an important factor for the evaluation of fracability. Based on the microstructure of Model I fracture, combining the fracture mechanics with the fractal theory, this paper established a new calculation method of shale fracture toughness. The surface energy of shale can be calculated by means of crystal splitting, and the calculation results can be obtained easily via rock density and acoustic time. This paper presents a comparison between the fractal calculation results and the experimental test results and traditional predicting results. The comparison shows that the mean error of fractal calculation is 3.63% and the mean error of traditional predicting is ?10.53%, validating the accuracy of the new method. Referring to the horizontal well logging data of horizontal wells, this method can be used to establish the wellbore model-I fracture toughness index continuity. Considering the relationship between the fracability level and the probability of stimulated reservoir volume, the class III and class II fracability level is preferred. The fractal calculation method of model I fracture toughness of shale is important in the perspective of quantitative evaluation of shale gas reservoir fracability.

Key words: shale rock, model I crack, fracture toughness, fractal, fracture toughness index

中图分类号: 

  • TU 452
[1] 王创业, 常新科, 刘沂琳, 郭文彬, . 单轴压缩条件下大理岩破裂过程声发射频谱 演化特征实验研究[J]. 岩土力学, 2020, 41(S1): 51-62.
[2] 邹先坚, 王益腾, 王川婴. 钻孔图像中岩石结构面三维形貌特征及 优势抗滑方向研究[J]. 岩土力学, 2020, 41(S1): 290-298.
[3] 卞康, 陈彦安, 刘建, 崔德山, 李一冉, 梁文迪, 韩啸. 不同吸水时间下页岩卸荷破坏特征的 颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367.
[4] 蒋长宝, 魏 财, 段敏克, 陈昱霏, 余塘, 李政科, . 饱水和天然状态下页岩滞后效应及阻尼特性研究[J]. 岩土力学, 2020, 41(6): 1799-1808.
[5] 褚福永, 朱俊高, 翁厚洋, 叶洋帆. 粗粒料级配缩尺后最大干密度试验研究[J]. 岩土力学, 2020, 41(5): 1599-1604.
[6] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[7] 杨赫, 程卫民, 刘震, 王文玉, 赵大伟, 王文迪. 注水煤体有效渗流通道结构分形特征 核磁共振试验研究[J]. 岩土力学, 2020, 41(4): 1279-1286.
[8] 王峰, 张建清, . 考虑颗粒强度尺寸效应的原型堆石料破碎特性研究[J]. 岩土力学, 2020, 41(1): 87-94.
[9] 孙红, 宋春雨, 滕慕薇, 葛修润. 加荷条件下软黏土的孔隙演化特征[J]. 岩土力学, 2020, 41(1): 141-146.
[10] 周翠英, 梁宁, 刘镇, . 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学, 2019, 40(S1): 21-31.
[11] 赵国彦, 李振阳, 吴浩, 王恩杰, 刘雷磊. 含非贯通裂隙砂岩的动力破坏特性研究[J]. 岩土力学, 2019, 40(S1): 73-81.
[12] 修乃岭, 严玉忠, 胥云, 王欣, 管保山, 王臻, 梁天成, 付海峰, 田国荣, 蒙传幼, . 基于非达西流动的自支撑剪切裂缝导流 能力实验研究[J]. 岩土力学, 2019, 40(S1): 135-142.
[13] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[14] 朱赛楠, 殷跃平, 李 滨, . 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40(4): 1377-1386.
[15] 张小燕, 蔡燕燕, 周浩燃, 杨 洋, 李玉龙, . 珊瑚砂大剪切应变下的剪切特性和分形维数[J]. 岩土力学, 2019, 40(2): 610-615.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!