岩土力学 ›› 2019, Vol. 40 ›› Issue (1): 370-378.doi: 10.16285/j.rsm.2018.0486

• 数值分析 • 上一篇    下一篇

地面垂直钻孔预抽特厚煤层瓦斯数值试验与应用

袁 亮1,刘业娇1, 2, 3, 4,田志超2,唐春安5,薛俊华4,段昌瑞4,张 寒6   

  1. 1. 安徽理工大学,安徽 淮南 232001;2. 内蒙古科技大学 矿业研究院,内蒙古 包头 014010; 3. 河南理工大学 河南省瓦斯地质与瓦斯治理重点实验室——省部共建国家重点实验室培育基地,河南 焦作 454000; 4. 淮南矿业(集团)有限责任公司 平安煤炭开采工程技术研究院有限责任公司,安徽 淮南 232001; 5. 大连理工大学 土木工程学院,辽宁 大连 116024;6. 中国地质大学(武汉)研究生院,430074
  • 收稿日期:2018-03-29 出版日期:2019-01-11 发布日期:2019-01-31
  • 通讯作者: 刘业娇,女,1982年生,博士,副教授,主要从事矿山灾害防治与风险管理方面的研究。E-mail: liuyejiao408@163.com E-mail:yuanl_1960@sina.com
  • 作者简介:袁亮,男,1960年生,硕士,教授,博士生导师,中国工程院院士,主要从事煤炭开采与瓦斯治理方面的研究
  • 基金资助:
    国家重点研发计划资助项目(No. 2016YFC0801402);河南理工大学河南省瓦斯地质与瓦斯治理重点实验室——省部共建国家重点实验室培育基地开放基金项目(No. WS2018B10)。

Numerical test and application of gas pre-drainage in an extra-thick seam by using ground vertical boreholes

YUAN Liang1, LIU Ye-jiao1, 2, 3, 4, TIAN Zhi-chao2, TANG Chun-an5, XUE Jun-hua4, DUAN Chang-rui4, ZHANG Han6   

  1. 1. Anhui University of Science & Technology, Huainan, Anhui 232001, China; 2. The Mining Research Institute, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, 014010, China; 3. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo, Henan 454000, China; 4. Ping’an Coal Mining Institute of Engineering Technology Co., Ltd., Huainan Mining Industry (Group) Co., Ltd., Huainan, Anhui, 232001, China; 5. School of Civil Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China; 6. Graduate School, China University of Geosciences, Wuhan, Hubei 430074, China
  • Received:2018-03-29 Online:2019-01-11 Published:2019-01-31
  • Supported by:
    This work was supported by the National Key Research & Development Project of China (2016YFC0801402) and the Open Fund Project of the State Key Laboratory Cultivation Base for Gas Geology and Gas Control of Henan Polytechnic University (WS2018B10).

摘要: 为解决塔山煤矿高强度开采条件下瓦斯低含量、高涌出的问题,同时为了弥补大型物理实验和现场试验成本高、操作难的缺点,根据该矿8101工作面所属区域煤层的地质和瓦斯赋存条件,确定了数值试验方案,对地面垂直钻孔预抽特厚煤层瓦斯的效果进行优化分析。基于煤岩(体)的孔隙特征,构建了含瓦斯煤岩(体)破裂过程气-固耦合和渗透率-损伤耦合数学本构模型。采用RFPA2D瓦斯分析版软件建立地面钻孔抽放瓦斯的数值计算模型,设置有关简化条件、边界条件和物性参数,通过数值试验得出:地面垂直钻孔的终孔位置布置在煤层底部比较合理;在综合考虑地面垂直钻孔投入成本和瓦斯抽采效果的基础上,确定地面垂直钻孔间距为50~60 m比较合理。同时,由8101工作面地面垂直钻孔抽采煤层瓦斯的实际应用效果分析可知,当地面垂直钻孔的终孔位置布置在煤层底部,且钻孔间距布置为50 m时,能够实现良好的瓦斯抽放效果,这也从一定程度上进一步验证了数值试验的合理性和可行性。

关键词: 地面垂直钻孔, 含瓦斯煤层, 数值试验, 终孔位置, 钻孔间距

Abstract: This study is to solve the problems of the low content and high gush of gas under high-intensity mining conditions in Tashan coal mine, and to make up the disadvantages of high cost and difficult operation of large-scale physical experiments and field tests. According to the geological and gas occurrence conditions of regional coal seam which covers 8101 working face in Tashan coal mine, numerical testing schemes were designed to optimise and analyse the gas pre-drainage effect in the extremely thick seam by using ground vertical boreholes. Based on the pore characteristics of coal-rock (body), we developed mathematical constitutive models of gas-solid coupling and permeability-damage coupling in the gas-bearing coal-rock (body) rupture process. A numerical model of gas drainage was established by using RFPA2D-Gasflow software, and the relevant physical parameters, simplified initial conditions and boundary conditions were established. The following results can be achieved through the above numerical tests. First, the reasonable borehole bottom location of ground vertical boreholes is at the bottom of coal seam. Then, on the basis of considering the drilling cost and the drainage effect, the reasonable borehole spacing between adjacent ground vertical boreholes is from 50 to 60 m. Meanwhile, the actual application effect of gas extraction by using ground vertical boreholes in 8101 working face demonstrates a good gas drainage effect when the borehole bottom location is at the bottom of coal seam and the borehole spacing is 50 m. To a certain extent, the rationality and feasibility of numerical tests are further verified.

Key words: ground vertical borehole, gas-bearing coal seam, numerical test, borehole bottom location, borehole spacing

中图分类号: 

  • TU 470
[1] 许江, 宋肖徵, 彭守建, 张超林, 李奇贤, 张小蕾, . 顺层钻孔布置间距对煤层瓦斯抽采效果影响的 物理模拟试验研究[J]. 岩土力学, 2019, 40(12): 4581-4589.
[2] 李清川,李术才,王汉鹏,张红军,张 冰,张玉强,. 上覆流沙层隧道开挖面稳定性分析与数值试验研究[J]. , 2018, 39(7): 2681-2690.
[3] 薛 龙, 王 睿, 张建民, . 粒状介质三维复杂应力加载离散元数值试验方法[J]. 岩土力学, 2018, 39(12): 4681-4690.
[4] 张雅慧,汪丁建,唐辉明,李长冬,易贤龙. 基于PFC2D数值试验的异性结构面剪切强度特性研究[J]. , 2016, 37(4): 1031-1041.
[5] 徐令宇,蔡 飞,陈国兴,王国新,. 考虑循环软化的非线性动力本构模型在FLAC3D中的实现[J]. , 2016, 37(11): 3329-3335.
[6] 李 超 ,刘红岩 ,阎锡东,. 动载下节理岩体破坏过程的数值试验研究[J]. , 2015, 36(S2): 655-664.
[7] 鲁功达 ,晏鄂川 ,王雪明 ,谢良甫 ,高连通,. 孔隙分布分形维对多孔材料抗压强度的影响研究[J]. , 2014, 35(8): 2261-2268.
[8] 左双英,叶明亮,唐晓玲,续建科,史文兵. 层状岩体地下洞室破坏模式数值模型及验证[J]. , 2013, 34(S1): 458-465.
[9] 王 琦 ,李术才 ,李为腾 ,王德超 ,黄福昌 ,. 深部厚顶煤巷道让压型锚索箱梁支护系统布置方式对比研究[J]. , 2013, 34(3): 842-848.
[10] 曾 锃 ,张泽辉 ,杨宏丽 ,尹小涛 ,党发宁 . 基于边坡渐进破坏特征对传统极限平衡法几点假设的合理分析[J]. , 2012, 33(S1): 146-150.
[11] 马 刚 ,周 伟 ,常晓林 ,周创兵 . 颗粒劣化效应的堆石料流变细观数值模拟[J]. , 2012, 33(S1): 257-264.
[12] 雷小芹 ,杨果林. 边界面模型在FLAC3D中的开发及验证[J]. , 2012, 33(2): 635-640.
[13] 王 琦 ,李术才 ,李为腾 ,李 智 ,江 贝 ,. 让压型锚索箱梁支护系统组合构件耦合性能分析及应用[J]. , 2012, 33(11): 3374-3384.
[14] 周 伟 ,谢婷蜓 ,马 刚 ,常晓林 . 基于颗粒流程序的真三轴应力状态下堆石体的变形和强度特性研究[J]. , 2012, 33(10): 3006-3012.
[15] 左宇军 ,李术才 ,朱万成 ,张义平. 深部断续节理岩体中渗流对巷道稳定性影响的数值分析[J]. , 2011, 32(S2): 586-591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!