岩土力学 ›› 2019, Vol. 40 ›› Issue (7): 2637-2644.doi: 10.16285/j.rsm.2018.0488

• 基础理论与实验研究 • 上一篇    下一篇

单轴应力下带钻孔花岗岩注入高温蒸汽 破坏特征研究

武晋文1,冯子军2,梁 栋3,鲍先凯4   

  1. 1. 中北大学 理学院,山西 太原 030051;2. 太原理工大学 矿业工程学院,山西 太原 030024;3. 中国辐射防护研究院 中核高放废物地质处置评价技术重点实验室,山西 太原 030024;4. 内蒙古科技大学,土木工程学院,内蒙古 包头 014010
  • 收稿日期:2018-04-02 出版日期:2019-07-11 发布日期:2019-07-19
  • 作者简介:武晋文,男,1982年生,博士,讲师,主要从事高温岩石力学和水力压裂方面的研究工作
  • 基金资助:
    国家自然科学基金青年基金资助项目(No. 51504220,No. 51404161)。

Characteristics of granite failure by injecting high-temperature-vapour under uniaxial stress

WU Jin-wen1, FENG Zi-jun2, LIANG Dong3, BAO Xian-kai4   

  1. 1. School of Science, North University of China, Taiyuan, Shanxi 030051, China; 2. College of Mining Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China; 3. CNNC Laboratory on Geological Disporsal of High-level Radioactive Waste, China Institute for Radiation Protection, Taiyuan, Shanxi 030024, China; 4. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
  • Received:2018-04-02 Online:2019-07-11 Published:2019-07-19
  • Supported by:
    This work was supported by the National Natural Science Foundation for Young Scientists of China (51504220, 51404161).

摘要: 大型水力压裂是干热岩地热能开发中人工储留层建造的最有效手段,其核心力学问题为高温、高压下岩石的水力破岩机制。通过单轴应力下带钻孔花岗岩注入高温蒸汽破坏试验,研究固-热耦合作用下花岗岩的水力破岩机制。结果表明:高温对花岗岩破裂有很大的促进作用,热效应导致强度弱化,降低破裂压力。高速率注入430℃和350℃蒸汽破坏试验中,破裂压力比常温水压裂至少降低58%;低速率注入400 ℃和450 ℃蒸汽破坏试验中,花岗岩破裂压力比常温水压裂降低75%。注蒸汽破坏过程可分为热破裂损伤和宏观裂缝扩展两个阶段。高温蒸汽产生的热应力在钻孔周围随机发生热破裂,随着注入蒸汽时间的增加,热破裂范围由钻孔附近逐渐向远处扩展,热破裂分布密度增大,为宏观裂缝的产生提供便利条件。初始宏观裂缝首先出现在钻孔两侧,沿着最终形成的宏观裂缝轨迹扩展,直到试样破坏。与常温水压裂相比,低速率注蒸汽破坏是一个缓慢的延性拉破坏过程,裂缝相对钻孔不对称扩展,宽度小于水力压裂裂缝宽度。

关键词: 水力压裂, 花岗岩, 高温岩体, 声发射

Abstract: Large-scale hydraulic fracturing is the most effective way to construct the artificial reservoir in the development of hot dry rock geothermal energy. The key issue is to reveal the hydraulic fracture mechanism of rock under high temperature and pressure. The high-temperature-vapour-driven failure experiments were carried out on granite under uniaxial stress, and the preliminary results on the failure mechanism were obtained under thermo-mechanical coupling. Results indicate that high temperature can greatly cause the failure of granite by weakening the strength and reducing the breakdown pressure. Compared with the breakdown pressure of hydraulic fracturing at room temperature, they were decreased by at least 58% at the high injection rates of 430℃ and 350℃ vapours, while they were reduced by 75% at the low injection rates of 400℃ and 450℃ vapours in the vapour driven failure experiments. The process of high-temperature-vapour-driven failure can be divided into two stages, namely, thermal fracture damage and macrocrack propagation. In the thermal cracking stage, the thermal stress resulted in thermal cracks randomly around the borehole. With the increase of vapour injection time, the thermal cracking range gradually extended, and the microcracking density enhanced, which facilitated the fracture propagation. In the second stage, the fractures were primarily generated on both sides of the borehole and then propagated along the final trace of macrocracks until the failure of the specimen. Compared with hydraulic fracturing at room temperature, the failure induced by vapour at a low injection rate was a slow ductile tensile failure. The fracture extended asymmetrically along the borehole, and the width was smaller than that of hydraulic fracturing at room temperature.

Key words: hydraulic fracturing, granite, hot dry rock, acoustic emission

中图分类号: 

  • TU 443
[1] 王创业, 常新科, 刘沂琳, 郭文彬, . 单轴压缩条件下大理岩破裂过程声发射频谱 演化特征实验研究[J]. 岩土力学, 2020, 41(S1): 51-62.
[2] 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.
[3] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[4] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[5] 甘一雄, 吴顺川, 任义, 张光, . 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332.
[6] 邵长跃, 潘鹏志, 赵德才, 姚天波, 苗书婷, 郁培阳, . 流量对水力压裂破裂压力和增压率的影响研究[J]. 岩土力学, 2020, 41(7): 2411-2421.
[7] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[8] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[9] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[10] 张艳博, 孙林, 姚旭龙, 梁鹏, 田宝柱, 刘祥鑫, . 花岗岩破裂过程声发射关键信号时 频特征试验研究[J]. 岩土力学, 2020, 41(1): 157-165.
[11] 郑坤, 孟庆山, 汪稔, 余克服, . 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 2020, 41(1): 205-213.
[12] 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72.
[13] 楼烨, 张广清. 压裂液黏度对循环水力压裂影响的试验研究[J]. 岩土力学, 2019, 40(S1): 109-118.
[14] 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274.
[15] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!