岩土力学 ›› 2019, Vol. 40 ›› Issue (7): 2825-2837.doi: 10.16285/j.rsm.2018.0497

• 岩土工程研究 • 上一篇    下一篇

土岩组合岩体中抗拔桩极限承载力的确定

穆锐1,浦少云2, 3,黄质宏1,李永辉4,郑培鑫5,刘 旸1,刘 泽6,郑红超7   

  1. 1. 贵州大学 土木工程学院,贵州 贵阳 550025;2. 东南大学 交通学院,江苏 南京 211189;3. 东南大学 岩土工程研究所,江苏 南京 211189;4. 大连理工大学 海岸和近海工程国家重点实验室,辽宁 大连 116024;5. 华南理工大学 土木与交通学院,广东 广州 510641; 6. 中南大学 土木工程学院,湖南 长沙 410075;7. 米易县交通运输局,四川 攀枝花 617200
  • 收稿日期:2018-04-02 出版日期:2019-07-11 发布日期:2019-07-28
  • 通讯作者: 浦少云,男,1993年生,博士研究生,主要从事岩土材料本构理论及基础工程相关方面的研究。E-mail: 2290605640@qq.com E-mail: 1337375993@qq.com
  • 作者简介:穆锐,男,1993年生,硕士研究生,主要从事基础工程、岩土力学及岩土材料本构相关方面的研究工作
  • 基金资助:
    贵州省土木工程一流学科建设项目(No. QYNYL〔2017〕0013);国家自然科学基金资助项目(No. 51168009)。

Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses

MU Rui1, PU Shao-yun2, 3, HUANG Zhi-hong1, LI Yong-hui4, ZHENG Pei-xin5, LIU Yang1, LIU Ze6, ZHENG Hong-chao7   

  1. 1. School of Civil Engineering, Guizhou University, Guiyang, Guizhou 550025, China; 2. School of Transportation, Southeast University, Nanjing, Jiangsu 211189, China; 3. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 211189, China; 4. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China; 5. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong 510641, China; 6. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 7. Transportation Department of Miyi County, Panzhihua, Sichuan 617200, China
  • Received:2018-04-02 Online:2019-07-11 Published:2019-07-28
  • Supported by:
    This work was supported by the First-class Discipline Construction Project of Civil Engineering in Guizhou Province (QYNYL〔2017〕0013) and the National Natural Science Foundation of China (51168009).

摘要: 为全面探究土岩组合岩体中抗拔桩的极限承载力,结合工程岩土参数及试验数据,运用Flac3D数值分析软件对其进行数值模拟分析,即可得到土岩组合岩体中抗拔桩的极限承载力。基于被动状态下的Kotter极限平衡方程式求解土层提供的抗拔力,根据岩石强度,基于Hoek-Brown破坏准则求解抗拔桩嵌岩端岩体的抗拉强度,从而可计算得到嵌岩端岩体的抗拔力;由静力平衡原理,叠加土层及嵌岩端岩体提供的抗拔力及破坏锥体重量,即可得到土岩组合岩体中嵌岩抗拔桩的极限承载力理论解析式。在嵌岩深度较小的情况下,该解析式的理论计算值与数值模拟分析值相接近,但随着嵌岩深度的增加,理论计算值会偏离数值计算值。故结合数值模拟试验值,对提出的极限承载力理论解析式作进一步的修正,得到修正后的极限承载力解析式能反映嵌岩端岩石风化程度、嵌岩深度、土层厚度、桩长对极限承载力的影响。运用修正后的解析式对该地质条件下不同抗拔桩的极限承载力计算表明:数值模拟结果与理论计算结果相吻合,说明所建立的抗拔桩极限承载力解析式的方法是可行的。同时,运用该方法可确定类似工程中嵌岩抗拔桩的极限承载力。

关键词: 桩基工程, 抗拔桩, Kotter方程, Hoek-Brown准则, Flac3D数值模拟, 极限承载力

Abstract: In order to comprehensively explore the ultimate bearing capacity of uplift piles in combined soil and rock masses, combined with engineering geotechnical parameters and experimental data, the Flac3D numerical analysis software is adopted to carry out numerical simulation analysis to obtain the ultimate bearing capacity of uplift piles in the composite rock mass. The Kotter limit equilibrium passive equation is employed to solve the pull-out force provided by the soil layer. And based on the rock strength, the strength of the rock mass embedded in the rock pile can be determined by the Hoek-Brown failure criterion. In turn, the pull-out force of the rock mass embedded in the rock can also be obtained. In addtion, based on the principle of force balance, the ultimate bearing capacity of rock in lay uplift piles in the combined rock mass can be obtained by superimposing the pull-out resistance provided by failure rock layer and the rock mass on the gravity of failure cone. The theoretical calculation value obtained from the analytical formula is close to the numerical simulation analysis value in the case of small rock-socketed depth. However, with the increase of the rock-socketed depth, the theoretical calculation value fluctuates within a certain range around the experimental value. Therefore, combining with the numerical results, the theoretical formula of the ultimate bearing capacity is modified. Finally, by taking the consideration of the effect of rock wathering, rock-sockering depth, soil thickness and pile length, the improved ultimate bearing capacity analytical formula is obtained. The modified analytical formula is used to predict the ultimate bearing capacity of different uplift piles under different geological conditions. The predicted results show that the numerical simulation results are consistent with the theoretical calculation results, which means the analytical method of the ultimate bearing capacity of uplift piles in this paper is feasible. Based on a part of test result, the ultimate bearing capacity of different rock-socked piles with different rock-socked depths in similar projects can be determined by this method.

Key words: pile foundation engineering, uplift piles, Kotter equation, Hoek-Brown criterion, Flac3D numerical simulation, ultimate bearing capacity

中图分类号: 

  • TU 431
[1] 李超, 李涛, 荆国业, 肖玉华. 竖井掘进机撑靴井壁土体极限承载力研究[J]. 岩土力学, 2020, 41(S1): 227-236.
[2] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[3] 赵明华, 彭文哲, 杨超炜, 肖尧, 刘亚楠. 斜坡地基刚性桩水平承载力上限分析[J]. 岩土力学, 2020, 41(3): 727-735.
[4] 杨学祥, 焦园发, 杨语驿, . 充气膨胀控制锚杆的研制与试验[J]. 岩土力学, 2020, 41(3): 869-876.
[5] 金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939-951.
[6] 邓涛, 林聪煜, 柳志鹏, 黄明, 陈文菁, . 大位移条件下水平受荷单桩的简明弹塑性计算方法[J]. 岩土力学, 2020, 41(1): 95-102.
[7] 袁维, 刘尚各, 聂庆科, 王伟, . 基于冲切破坏模式的嵌岩桩桩端溶洞顶板 临界厚度确定方法研究[J]. 岩土力学, 2019, 40(7): 2789-2798.
[8] 任晋岚, 陈曦, 王冬勇, 吕彦楠. 基于广义Hoek-Brown准则的瞬时线性化 强度折减技术[J]. 岩土力学, 2019, 40(12): 4865-4872.
[9] 王冬勇, 陈曦, 于玉贞, 吕彦楠, . 基于二阶锥规划有限元增量加载法的条形浅基础极限承载力分析[J]. 岩土力学, 2019, 40(12): 4890-4896.
[10] 吴顺川, 张敏, 张诗淮, 姜日华, . 修正Hoek-Brown准则的等效Mohr-Coulomb 强度参数确定方法研究[J]. 岩土力学, 2019, 40(11): 4165-4177.
[11] 冯君, 王洋, 张俞峰, 黄林, 何长江, 吴红刚, . 玄武岩纤维与钢筋锚杆锚固性能现场对比试验研究[J]. 岩土力学, 2019, 40(11): 4185-4193.
[12] 宗钟凌,鲁先龙,李青松,. 静压钢管注浆微型桩抗压与抗拔对比试验研究[J]. , 2018, 39(S1): 362-368.
[13] 尹君凡,雷 勇,陈秋南,刘一新,邓加政,. 偏心荷载下溶洞顶板冲切破坏上限分析[J]. , 2018, 39(8): 2837-2843.
[14] 曹文贵,谭建辉,胡卫东, . 水平加筋地基极限承载力的极限上限分析法[J]. , 2018, 39(6): 1955-1962.
[15] 刘飞跃,杨天鸿,张鹏海,周靖人,邓文学,侯宪港,赵永川, . 基于声发射的岩石破裂应力场动态反演[J]. , 2018, 39(4): 1517-1524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!