›› 2018, Vol. 39 ›› Issue (S1): 282-288.doi: 10.16285/j.rsm.2018.0580

• 基础理论与实验研究 • 上一篇    下一篇

循环单剪下珊瑚钙质砂和普通硅质砂剪切特性对比研究

纪文栋1, 2,张宇亭1, 2,王 洋1, 2,裴文斌1, 2   

  1. 1. 交通运输部天津水运工程科学研究所 港口水工建筑技术国家工程试验室,天津 300456; 2. 交通运输部天津水运工程科学研究所 水工构造物检测诊断与加固技术交通行业重点试验室,天津 300456
  • 收稿日期:2018-04-03 出版日期:2018-07-20 发布日期:2018-09-02
  • 作者简介:纪文栋,男,1985年生,博士,副研究员,主要从事岩土力学试验研究与数值模拟方面的研究工作
  • 基金资助:

    国家自然科学基金面上项目(No. 41572297);中央级公益性科研院所基本科研业务费专项资金项目(No. TKS-150103,No. TKS-160101)。

Comparative study of shear performance between coral sand and siliceous sand in cycles simple shear test

JI Wen-dong1, 2, ZHANG Yu-ting1, 2, WANG Yang1, 2, PEI Wen-bin1, 2   

  1. 1. National Engineering Laboratory for Port Hydraulic Construction Technology, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China; 2. Key Laboratory of Harbor & Marine Structure Safety, Ministry of Communications, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
  • Received:2018-04-03 Online:2018-07-20 Published:2018-09-02
  • Supported by:

    This work was supported by the National Science Foundation of China(41572297) and the Fundamental Research Funds for the Central Public Welfare Research Institutes(TKS-150103,TKS-160101).

摘要: 对普通硅质砂和西沙群岛珊瑚钙质砂开展多级正应力下循环单剪试验,对比多循环周期下两种砂土剪切性质和颗粒破碎的差异。研究发现,两种砂样在循环剪切下体积变化都比较微弱,剪切过程中存在阶段性剪胀,使得试样的轴向位移呈波动变化;循环单剪下剪应力峰值包络线可以用联合型指数函数表达;剪应力随循环周期变化分为同步阶段和差异阶段,两个阶段转变节点对应的循环周期数随着正应力的增大而迅速减小;同步增长阶段珊瑚钙质砂和普通硅质砂的剪应力变化一致,在差异阶段普通硅质砂的剪应力要高出珊瑚钙质砂。两种砂剪应力差异程度随试验正应力不同而变化,普通硅质砂剪应力最大可高出珊瑚钙质砂14.7%;珊瑚钙质砂和普通硅质砂的颗粒破碎存在明显差异,珊瑚钙质砂全粒径范围内颗粒破碎分布更均衡,普通硅质砂在特定粒径区间内出现了剧烈的颗粒破碎,颗粒级配曲线存在明显拐点。普通硅质砂和珊瑚钙质砂滞回曲线的形状及随循环次数的变化规律有显著差异,是两种砂样剪切性质不同的重要体现。

关键词: 钙质沙, 循环单剪, 砂土, 剪应力, 颗粒破碎

Abstract: Cycles simple shear test are carried out for coral calcareous sand from Xisha Islands and local siliceous sand under multistage normal stress; and the difference of shear properties and particle breaking properties of two kinds of sandy soil under multiple cycles is compared. Under cyclic shear, both sand samples exist relatively weak volume changes and staggered shear dilatation which make the axial displacement curve of the specimen fluctuating. Shear stress peak envelope in cycles simple shear test can be expressed as an ExpAssoc function. Shear stress is divided into synchronous phase and differential phase with the change of cycle period; and the number of cycles corresponding to two phase transition nodes decreases rapidly as the normal stress increases. During the synchronous phase, the shear stress of coral sand and siliceous sand is consistent, while during the differential phase, the shear stress of siliceous sand is significantly higher than that of coral sand. The shear stress difference between the two types of sand varies with the normal stress, with the shear stress of the siliceous sand can be up to 14.7% higher than that of the coral sand in maximum. There are significant differences in the particle breakage between coral sand and siliceous sand. The distribution of particle breakage in the full particle size range of coral sand is more balanced. By contrast, siliceous sand has a violent particle breakage within a certain particle size range with obvious inflection points in the grading curve. The shape of the hysteresis loops and its variation with the number of cycles have significant differences between siliceous sand and coral sand, which reflecting the difference in the shear properties of the two sand samples.

Key words: coral calcareous sand, cycles simple shear test , sand, shear stress, particle crushing

中图分类号: 

  • TU 458

[1] 毛家骅, 袁大军, 杨将晓, 张兵, . 砂土地层泥水盾构开挖面孔隙变化特征理论研究[J]. 岩土力学, 2020, 41(7): 2283-2292.
[2] 褚福永, 朱俊高, 翁厚洋, 叶洋帆. 粗粒料级配缩尺后最大干密度试验研究[J]. 岩土力学, 2020, 41(5): 1599-1604.
[3] 孙静, 公茂盛, 熊宏强, 甘霖睿, . 冻融循环对粉砂土动力特性影响的试验研究[J]. 岩土力学, 2020, 41(3): 747-754.
[4] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[5] 李小刚, 朱长歧, 崔翔, 张珀瑜, 王睿, . 含碳酸盐混合砂的三轴剪切试验研究[J]. 岩土力学, 2020, 41(1): 123-131.
[6] 覃玉兰, 邹新军, 曹雄. 均质砂土中水平简谐荷载与扭矩联合 受荷单桩内力、位移分析[J]. 岩土力学, 2020, 41(1): 147-156.
[7] 孔亮, 刘文卓, 袁庆盟, 董彤, . 常剪应力路径下含气砂土的三轴试验[J]. 岩土力学, 2019, 40(9): 3319-3326.
[8] 张凌凯, 王睿, 张建民, 唐新军, . 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554.
[9] 彭宇, 丁选明, 肖杨, 楚剑, 邓玮婷, . 基于染色标定与图像颗粒分割的 钙质砂颗粒破碎特性研究[J]. 岩土力学, 2019, 40(7): 2663-2672.
[10] 言志信, 龙哲, 屈文瑞, 张森, 江平, . 地震作用下含软弱层岩体边坡锚固 界面剪切作用分析[J]. 岩土力学, 2019, 40(7): 2882-2890.
[11] 孔宪京, 宁凡伟, 刘京茂, 邹德高, 周晨光, . 应力路径和干湿状态对堆石料颗粒破碎的影响研究[J]. 岩土力学, 2019, 40(6): 2059-2065.
[12] 陈建旭, 宋文武, . 平动模式下挡土墙非极限主动土压力[J]. 岩土力学, 2019, 40(6): 2284-2292.
[13] 孙逸飞, 陈 成, . 无状态变量的状态依赖剪胀方程及其本构模型[J]. 岩土力学, 2019, 40(5): 1813-1822.
[14] 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272.
[15] 丁建源, 陈晓斌, 张家生, 刘怡吟, 肖源杰, . 基于对数几率回归模型的粗颗粒土颗粒 破碎过程演化研究[J]. 岩土力学, 2019, 40(4): 1465-1473.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!