岩土力学 ›› 2022, Vol. 43 ›› Issue (9): 2391-2398.doi: 10.16285/j.rsm.2018.0637

• 基础理论与实验研究 • 上一篇    下一篇

三轴应力下水对泥质砂岩力学特性 影响的试验研究

周辉1, 2,宋明1, 2,张传庆1, 2,杨凡杰1, 2,路新景3,房后国3,邓伟杰3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点试验室,湖北 武汉 430071; 2. 中国科学院大学,北京 100049;3. 黄河勘测规划设计有限公司,河南 郑州 450003
  • 收稿日期:2018-04-16 修回日期:2022-05-27 出版日期:2022-09-12 发布日期:2022-09-12
  • 作者简介:周辉,男,1972年生,博士,研究员,主要从事岩石力学试验、理论、数值分析与工程安全性分析方面的研究
  • 基金资助:
    国家重点研发计划资助(No.2019YFC0605103,No.2019YFC0605104);国家重点基础研究发展计划项目(973计划)(No.2014CB046902)。

Experimental study of influences of water on mechanical behaviors of argillaceous sandstone under tri-axial compression

ZHOU Hui1, 2, SONG Ming1, 2, ZHANG Chuan-qing1, 2, YANG Fan-jie1, 2, LU Xin-jing3, FANG Hou-guo3, DENG Wei-jie3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Yellow River Engineering Consulting Co., Ltd., Zhengzhou, Henan 450003, China
  • Received:2018-04-16 Revised:2022-05-27 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Key R&D Program of China(2019YFC0605103, 2019YFC0605104) and the National Program on Key Basic Research Project of China (973 Program) (2014CB046902).

摘要: 复杂应力状态下泥质砂岩遇水软化,严重降低围岩承载力,导致围岩破坏范围和变形压力增大,严重威胁输水隧洞运行期安全。为此,以兰州水源地输水隧洞泥质砂岩为研究对象,开展了不同浸润时间下的三轴压缩试验研究。试验结果表明,随着浸润时间的延长,泥质砂岩岩样峰值强度和残余强度对围压的敏感程度逐渐降低,水在一定程度上降低了峰值强度和残余强度对围压的敏感程度;浸润前期,残余强度随浸润时间的降低速率明显小于峰值强度随浸润时间的降低速率,水对泥质砂岩岩样峰值强度的软化作用较为明显;泥质砂岩岩样的峰值强度、残余强度和弹性模量均随浸润时间的增长呈负指数关系减小;随着围压的升高,浸润时间对弹性模量的影响程度逐渐减弱,围压升高在一定程度上降低了水对泥质砂岩岩样弹性模量的软化作用。

关键词: 泥质砂岩, 水, 三轴压缩试验, 力学特性

Abstract: The water softening of argillaceous sandstone in complex stress state will seriously reduce the bearing capacity of surrounding rock, resulting in the increase of failure range and deformation pressure of surrounding rock, and finally seriously threaten the safety of water tunnel during operation. To solve this problem, triaxial tests under different immersion time are carried out to investigate by using argillaceous sandstone from water delivery tunnel of Lanzhou water source project. The results are as follows. As the immersion time prolongs, the sensitivity of peak strength and residual strength to confining pressure decreases gradually. This may be attributed to the fact that the water reduces the sensitivity of peak strength and residual strength to confining pressure to a certain extent. In the early stage of immersion, the decreasing rate of residual strength with immersion time is significantly less than that of peak strength with immersion time, and the softening effect of water on the peak strength of argillaceous sandstone is more remarkable. The peak strength, residual strength and elastic modulus of argillaceous sandstone samples decrease with the increase of immersion time in a negative exponential relationship. With the increase of confining pressure, the influence of immersion time on elastic modulus gradually weakens, and the increase of confining pressure reduces the softening effect of water on the elastic modulus of argillaceous sandstone to a certain extent.

Key words: argillaceous sandstone, water, triaxial compression test, mechanical behaviors

中图分类号: 

  • TU411
[1] 陈勇, 苏剑, 曹玲, 王力, 王世梅, . 基于数据挖掘的土−水特征曲线演化规律研究[J]. 岩土力学, 2022, 43(S2): 23-34.
[2] 高峰, 熊鑫, 熊信, 周科平, . 饱和度对玄武岩微波响应的影响试验研究[J]. 岩土力学, 2022, 43(S2): 43-51.
[3] 孙杰豪, 郭保华, 田世轩, 程坦, . 峰前循环剪切作用下岩石节理剪切力学特性[J]. 岩土力学, 2022, 43(S2): 52-62.
[4] 陈伟志, 张莎莎, 李安洪, . 温度循环下压实粗粒盐渍土水盐迁移与变形响应[J]. 岩土力学, 2022, 43(S2): 74-84.
[5] 陈光波, 张俊文, 贺永亮, 张国华, 李谭, . 煤岩组合体峰前能量分布公式推导及试验[J]. 岩土力学, 2022, 43(S2): 130-143.
[6] 王刚, 冯净, 陈雪畅, 闫松, 李胜鹏, . 基于物化特性的煤层注水难易程度模型[J]. 岩土力学, 2022, 43(S2): 144-154.
[7] 李桐, 陈明, 叶志伟, 卢文波, 魏东, 郑祥, . 混凝土含水裂隙中爆炸压力传播的模型试验研究[J]. 岩土力学, 2022, 43(S2): 205-213.
[8] 肖涵, 董超强, 章荣军, 陆展, 郑俊杰. 生石灰对理化复合法处理淤泥浆效率的影响研究[J]. 岩土力学, 2022, 43(S2): 214-222.
[9] 周培尧, 潘丽燕, 陈华生, 王斌, 邹志坤, 张敏, . 薄互层水力裂缝垂向扩展控制因素试验研究[J]. 岩土力学, 2022, 43(S2): 299-306.
[10] 张涛麟, 耿汉生, 许宏发, 莫家权, 林一帆, 马林建. 钙质砂注浆加固材料制备及固结体性能试验研究[J]. 岩土力学, 2022, 43(S2): 327-336.
[11] 罗维平, 袁大军, 金大龙, 陆平, 陈健, 郭海鹏, . 富水砂层盾构开挖面支护压力与地层变形关系 离心模型试验研究[J]. 岩土力学, 2022, 43(S2): 345-354.
[12] 邓鹏海, 刘泉声, 黄兴, 潘玉丛, 伯音, . 水平层状软弱围岩破裂碎胀大变形机制 有限元−离散元耦合数值模拟研究[J]. 岩土力学, 2022, 43(S2): 508-523.
[13] Muhammad Usman Azhar, 周 辉, 杨凡杰, 高阳, 朱勇, 路新景, 房后国, 耿轶君, . 软弱泥质砂岩地层中输水隧洞稳定性研究[J]. 岩土力学, 2022, 43(S2): 626-639.
[14] 刘元玺, 李银平, 施锡林, 赵凯, . 盐穴储气库微渗层注浆封堵试验研究[J]. 岩土力学, 2022, 43(S1): 23-34.
[15] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .