岩土力学 ›› 2019, Vol. 40 ›› Issue (7): 2487-2496.doi: 10.16285/j.rsm.2018.0652

• 基础理论与实验研究 • 上一篇    下一篇

隐晶质玄武岩破裂演化及破坏特征试验研究

张传庆1, 2,刘振江1, 2,张春生3,周辉1, 2,高阳1, 2,侯靖3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点试验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 中国电建集团华东勘测设计研究院有限公司,浙江 杭州 310014
  • 收稿日期:2018-04-20 出版日期:2019-07-11 发布日期:2019-07-06
  • 通讯作者: 刘振江,男,1987年生,博士研究生,主要从事地下工程灾害控制及连续-非连续数值计算方面的研究工作。E-mail: 191288056@qq.com E-mail:cqzhang@whrsm.ac.cn
  • 作者简介:张传庆,男,1977年生,博士,研究员、博士生导师,主要从事深部工程灾害防护机制与新技术方面的研究工作。
  • 基金资助:
    国家自然科学基金-雅砻江联合基金重点项目(No. U1865203);国家自然科学基金(No. 51279201)。

Experimental study on rupture evolution and failure characteristics of aphanitic basalt

ZHANG Chuan-qing1, 2, LIU Zhen-jiang1, 2, ZHANG Chun-sheng3, ZHOU Hui1, 2, GAO Yang1, 2, HOU Jing3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Hydro China Huadong Engineering Corporation, Hangzhou, Zhejiang 310014, China
  • Received:2018-04-20 Online:2019-07-11 Published:2019-07-06
  • Supported by:
    This work was supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China (U1865203) and the National Natural Science Foundation of China (51279201).

摘要: 隐晶质玄武岩是白鹤滩水电站超大规模地下厂房洞室群中广泛揭露出的主要围岩类别之一,且普遍赋存隐微裂隙,开挖过程中展现出特殊的力学响应特征。综合采用CT扫描、高速摄像、声发射、扫描电镜等手段,分析了隐晶质玄武岩的变形破坏特征、裂纹扩展及声发射演化规律等,并探讨了其细观破坏机制。结果表明:完整试样应力-应变曲线光滑,加载至峰值强度时瞬间爆裂,声发射信号异常集中,碎裂破坏;含隐微裂隙试样应力-应变曲线呈锯齿状,出现多次表面剥落,整个过程声发射信号非常活跃,以劈裂破坏为主;含宏观裂隙试样应力-应变曲线呈双峰或多峰状,峰前原生裂隙局部滑移,第1次峰值时宏观破裂面形成,声发射信号集中于峰值应力跌落瞬间,以剪切破坏为主。隐晶质玄武岩细观破坏机制主要为矿物颗粒沿晶断裂和穿晶断裂。研究成果为准确认识并科学掌握白鹤滩地下厂房洞室群围岩的力学响应及其破裂演化特征奠定了坚实基础,也可为硬脆岩体高应力破坏的认识和灾害控制提供参考和借鉴。

关键词: 白鹤滩水电站, 玄武岩, 变形破坏特征, 声发射, 裂纹扩展, 细观机制

Abstract: Aphanitic basalt is one of the main types of surrounding rock widely observed in the cavern group of super large scale underground powerhouse of Baihetan hydropower station, which includes widely-seen hidden microfissures and unfolds special mechanical response characteristics during excavation. With the use of CT scan, high-speed camera, acoustic emission, scanning electron microscopy and other methods, the deformation and failure characteristics, crack propagation and AE evolution of aphanitic basalt were analyzed. Meanwhile, the microscopic failure mechanism was explored. The key outcomes are: The intact specimens with a smooth stress-strain curve instantaneously burst that caused AE signal abnormally concentrated when loaded to peak strength, which was mainly characterized by fragmented failure. The samples with hidden microfissures exhibited a stress-strain curve of “zig-zag” shape and multiple surface spalling and active AE signal during the whole compression process, of which the failure mode was primarily the splitting failure. The samples with macrofissures showed a stress-strain curve of double or multi-peak shape and the failure mode was primarily the shear failure that the preexisting fissures started to partially slip before the peak. After that, the macroscopic rupture surface formed at the first peak which led to AE signal concentrate at the moment when peak stress instantly dropped .The microscopic failure mechanism of aphanitic basalt was mainly characterized by intergranular fracture and transgranular fracture of mineral grains. The research results lay a solid foundation for accurately understanding and scientifically mastering the mechanical response and rupture evolution characteristics of the surrounding rock mass of underground powerhouse caverns of Baihetan hydropower station, and also provide reference and guidance for the understanding of high-stress failure and disaster control of brittle rock masses.

Key words: Baihetan hydropower station, basalt, deformation and failure characteristics, acoustic emission, crack propagation, meso-mechanism

中图分类号: 

  • TU 452
[1] 王创业, 常新科, 刘沂琳, 郭文彬, . 单轴压缩条件下大理岩破裂过程声发射频谱 演化特征实验研究[J]. 岩土力学, 2020, 41(S1): 51-62.
[2] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[3] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[4] 甘一雄, 吴顺川, 任义, 张光, . 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332.
[5] 罗刚, 张辉傲, 马国涛, 周海文, 胡卸文, 王文健, 王文沛, . 高速岩质滑坡滑面滑动摩擦特性研究——以王山 抓口寺滑坡为例[J]. 岩土力学, 2020, 41(7): 2441-2452.
[6] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[7] 潘锐, 程桦, 王雷, 王凤云, 蔡毅, 曹广勇, 张朋, 张皓杰, . 巷道浅层破碎围岩锚注加固承载特性试验研究[J]. 岩土力学, 2020, 41(6): 1887-1898.
[8] 艾迪昊, 李成武, 赵越超, 李光耀, . 煤体静载破坏微震、电磁辐射及裂纹扩展特征研究[J]. 岩土力学, 2020, 41(6): 2043-2051.
[9] 张艳博, 孙林, 姚旭龙, 梁鹏, 田宝柱, 刘祥鑫, . 花岗岩破裂过程声发射关键信号时 频特征试验研究[J]. 岩土力学, 2020, 41(1): 157-165.
[10] 郑坤, 孟庆山, 汪稔, 余克服, . 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 2020, 41(1): 205-213.
[11] 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72.
[12] 楼烨, 张广清. 压裂液黏度对循环水力压裂影响的试验研究[J]. 岩土力学, 2019, 40(S1): 109-118.
[13] 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274.
[14] 杨道学, 赵奎, 曾鹏, 卓毓龙, . 基于粒子群优化算法的未知波速声发射 定位数值模[J]. 岩土力学, 2019, 40(S1): 494-502.
[15] 侯公羽, 荆浩勇, 梁金平, 张广东, 谭金鑫, 张永康, 杨希, . 不同卸荷速率下矩形巷道变形及 声发射特性试验研究[J]. 岩土力学, 2019, 40(9): 3309-3318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!