岩土力学 ›› 2019, Vol. 40 ›› Issue (4): 1291-1298.doi: 10.16285/j.rsm.2018.0677

• 基础理论与实验研究 • 上一篇    下一篇

沙漠微生物矿化覆膜及其稳定性的现场试验研究

李 驰1,王 硕1,王燕星2,高 瑜1,斯日古楞2   

  1. 1. 内蒙古工业大学 土木工程学院,内蒙古 呼和浩特 010051;2. 内蒙古工业大学 理学院,内蒙古 呼和浩特 010051
  • 收稿日期:2018-04-19 出版日期:2019-04-11 发布日期:2019-04-24
  • 作者简介:李驰,女,1973年生,博士,教授,主要从事特殊土改良与加固方面的教学与研究工作
  • 基金资助:
    国家自然科学基金(No. 51668050);内蒙自治区科技计划(No. 20140155);内蒙自然科学基金(No. 2014MS0105)。

Field experimental study on stability of bio-mineralization crust in the desert

LI Chi1, WANG Shuo1, WANG Yan-xing2, GAO Yu1, BAI Siriguleng2   

  1. 1. College of Civil Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China; 2. College of Science, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
  • Received:2018-04-19 Online:2019-04-11 Published:2019-04-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51668050), the Inner Mongolia Science & Technology Plan (20140155) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2014MS0105).

摘要: 将微生物诱导矿化技术应用于原位沙漠覆膜的形成,使得流动沙丘经结皮固定而成为半固定、固定沙丘,从根本上阻断沙尘暴的源头。在内蒙古乌兰布和沙漠腹地选择两个微生物矿化试验区域(TP1和TP3),分别用于两种不同矿化菌种诱导生成碳酸钙覆膜。研究沙漠微生物矿化覆膜的现场试验方法及工艺,对原位矿化覆膜的强度及其在沙漠环境中的长期稳定性进行跟踪检测。采用沙漠土中自行提取的葡萄球菌和传统的巴氏芽孢杆菌两种不同的微生物矿化菌种,通过现场贯入试验检测7、14、28、60、210 d后矿化覆膜沿深度发展的贯入阻力,并将覆膜厚度为2 cm处的平均贯入阻力换算成覆膜层强度,总结覆膜强度随时间的发展变化规律。现场观测结果显示,不同微生物菌种诱导生成的矿化覆膜均在试验的第4天开始形成,到第7天覆膜层具有稳定的强度和厚度,现场检测覆膜的平均厚度为2.0~2.5 cm,经自源葡萄球菌诱导生成的矿化覆膜(TP1)的强度是巴氏芽孢杆菌诱导生成的矿化覆膜(TP3)强度的1.05倍。当经历冬春交替后覆膜层强度都有不同程度的降低,明显地TP3较TP1区域表面剥落更为严重,第210天检测TP3的平均厚度为0.7~1.0 cm,覆膜强度较第7天时降低19%,覆膜内碳酸钙含量较第7天检测时降低15%~30%。而TP1在第210天时的强度较第7天时强度降低仅2%。因此,微生物诱导矿化技术可以应用于沙漠原位覆膜的形成,且沙漠自源葡萄球菌经诱导生成的矿化覆膜层具有更好的强度表现和稳定性。

关键词: 微生物诱导矿化技术, 葡萄球菌, 长期稳定性, 沙漠矿化覆膜, 现场试验

Abstract: Microbial induced calcite precipitation (MICP) technology is applied to the formation of in-situ bio-mineralization crust on the surface of desert, which enables floating dune to be semi-fixed and fixed, hinders wind erosion, and fundamentally blocks the source of sandstorm. Two bio-mineralization test plots (TP1 and TP3) were built using two different microbial strains on the Aeolian sand surface in Ulan Buh desert, Inner Mongolia Autonomous Region of China. The field-scale experiment methods and processes were designed to evaluate and analyze the strength of bio-mineralization crust and its long-term stability in the desert environment. Staphylococcus, extracted from local Aeolian sand, and Sporoscarcina pasteurii, a traditional bio-mineralized bacterium, were used to induce the formation of calcium carbonate crystals. Through penetration tests in site, the penetration resistance developed along the depth of bio-mineralization crust was recorded on the 7th, 14th, 28th, 60th and 210th day. The strength of bio-mineralization crust was converted according to the value of average penetration resistance at 2.0 cm of the crust. The variation of strength of bio-mineralization crust with mineralization time was summarized. From visual observation in site, the bio-mineralization crust began to form on the 4th day. The average thickness ranges from 2.0 cm to 2.5 cm on the 7th day, and the strength of bio-mineralization crust induced from Staphylococcus was 1.05 times than that of Sporoscarcina pasteurii. For the bio-mineralization crust TP3 induced from Sporoscarcina pasteurii after freeze-thaw cycles on the 210th day, the average thickness decreased from 0.7cm to 1.0cm, the strength was reduced by 19% and the content of calcium carbonate was reduced by 15%-30% compared with that on the 7th day. However, the strength of bio-mineralization crust TP1 induced from Staphylococcus on the 210th day was reduced only by 2%, which is a little less than that on the 7th day. MICP technology can be applied to the formation of in situ bio-mineralization crust in desert. The bio-mineralization crust developed from Staphylococcus has better strength performance and long-term stability in desert environment than that from Sporoscarcina pasteurii.

Key words: microbial induced calcite precipitation (MICP) technology, Staphylococcus, long-term stability, bio-mineralization crust, field-scale test

中图分类号: 

  • TU 470
[1] 张晓磊, 冯世进, 李义成, 王雷, . 路基高架过渡段高铁运行引起的地表 振动现场试验研究[J]. 岩土力学, 2020, 41(S1): 187-194.
[2] 李任融, 孔纲强, 杨庆, 孙广超. 流速对桩−筏基础中能量桩换热效率 与热力耦合特性影响研究[J]. 岩土力学, 2020, 41(S1): 264-270.
[3] 陆晨凯, 孔纲强, 孙广超, 陈斌, 殷高翔, . 桩−筏基础中能量桩热−力耦合特性现场试验[J]. 岩土力学, 2019, 40(9): 3569-3575.
[4] 冯君, 王洋, 吴红刚, 赖冰, 谢先当, . 玄武岩纤维复合材料土层锚杆抗拔性能 现场试验研究[J]. 岩土力学, 2019, 40(7): 2563-2573.
[5] 吴爽爽, 胡新丽, 龚辉, 周昌, 徐楚, 王强, 应春业, . 3种模式下钻孔灌注桩桩-土剪切特性 现场试验研究[J]. 岩土力学, 2019, 40(7): 2838-2846.
[6] 余 瑜, 刘新荣, 刘永权, . 基坑锚索预应力损失规律现场试验研究[J]. 岩土力学, 2019, 40(5): 1932-1939.
[7] 王钦科, 马建林, 胡中波, 王 滨, . 浅覆盖层软质岩中抗拔桩承载特性现场试验研究[J]. 岩土力学, 2019, 40(4): 1498-1506.
[8] 信亚雯, 周志芳, 马 筠, 李鸣威, 陈 朦, 汪 姗, 胡尊乐, . 基于现场双管试验确定弱透水层水力参数的方法[J]. 岩土力学, 2019, 40(4): 1535-1542.
[9] 任连伟, 孔纲强, 郝耀虎, 刘汉龙, . 基于能量桩现场试验的土体综合热导率系数研究[J]. 岩土力学, 2019, 40(12): 4857-4864.
[10] 崔光耀, 祁家所, 王明胜, . 片理化玄武岩隧道围岩大变形控制现场试验研究[J]. 岩土力学, 2018, 39(S2): 231-237.
[11] 王炳龙,梅 祯,肖军华. 土工格室补强路基整治路基病害的试验研究[J]. , 2018, 39(S1): 325-332.
[12] 郭 飞,陶连金,孔 恒,马红红,张丽丽,张新全,. 兰州砂卵石地层盾构施工振动传播及衰减特性分析[J]. , 2018, 39(9): 3377-3384.
[13] 喻豪俊,彭社琴,赵其华,. 碎石土斜坡水平受荷桩承载特性研究[J]. , 2018, 39(7): 2537-2545.
[14] 王翔鹰,陈育民,江 强,刘汉龙, . 抗液化排水刚性桩沉桩过程的土压力响应[J]. , 2018, 39(6): 2184-2192.
[15] 付海清,袁晓铭,王 淼,. 基于现场液化试验的饱和砂土孔压增量计算模型[J]. , 2018, 39(5): 1611-1618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!