岩土力学 ›› 2019, Vol. 40 ›› Issue (7): 2469-2477.doi: 10.16285/j.rsm.2018.0701

• 基础理论与实验研究 •    下一篇

碳酸性水环境下隧洞衬砌结构劣化机制研究

周辉1,郑俊1, 2,胡大伟1,张传庆1,卢景景1,高阳1,张旺1, 3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点试验室,湖北 武汉 430071; 2. 湖北省地质局第七地质大队,湖北 宜昌 443100;3. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430068
  • 收稿日期:2018-04-17 出版日期:2019-07-11 发布日期:2019-07-06
  • 通讯作者: 郑俊,男,1982年生,博士,讲师,主要从事隧洞支护以及混凝土耐久性研究。E-mail: 154308390@qq.com E-mail: hzhou@whrsm.ac.cn
  • 作者简介:周辉,男,1972年生,博士,研究员,博士生导师,主要从事岩石力学试验、理论、数值分析与工程安全性分析方面的研究工作
  • 基金资助:
    中国科学院“百人计划项目”,国家自然科学基金项目(No. 51779252,No. 51479193)

Deterioration mechanism of tunnel lining structure in the carbonated water environment

ZHOU Hui1, ZHENG Jun1, 2, HU Da-wei1, ZHANG Chuan-qing1, LU Jing-jing1, GAO Yang1, ZHANG Wang1, 3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China. 2. The Seventh Geological Team of Hubei Geological Bureau, Yichang, Hubei 443100, China; 3. School of Civil Engineering and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
  • Received:2018-04-17 Online:2019-07-11 Published:2019-07-06
  • Supported by:
    This work was supported by ‘100 Talent Program’ of the Chinese Academy of Sciences and the National Natural Science Foundation of China (51779252, 51479193).

摘要: 不同于地上混凝土结构,隧洞衬砌结构会受到碳酸性水环境的影响,其劣化机制与大气环境中碳化作用存在明显的差异。为揭示碳酸性水环境作用下隧洞衬砌结构的劣化机制,开展了大气环境和碳酸性水环境下水泥砂浆室内加速侵蚀试验研究,研究结果表明:碳酸性水环境中水泥砂浆的碳化深度明显小于大气环境中的碳化深度,其碳化系数仅为大气环境中的0.18倍;大气环境下碳化作用导致水泥砂浆中孔体积减小,其单轴抗压强度和弹性模量均有明显提高,而碳酸性水环境加剧Ca元素流失,其碳化作用导致碳化层中Ca元素含量较低,从而破坏了水泥砂浆孔隙结构,导致水泥砂浆孔体积增加,最终碳酸性水环境导致水泥砂浆单轴抗压强度和弹性模量均降低,其中弹性模量降低幅度较大。研究结果揭示了碳酸性水环境会加速隧洞衬砌结构中Ca元素流失,造成孔隙增加而强度降低,最终导致隧洞衬砌结构劣化,从而影响隧洞衬砌结构长期安全运行。

关键词: 碳酸性水环境, 氮吸附, 侵蚀, 衬砌结构, 试验研究

Abstract: Compared with the ground concrete structures, the tunnel lining structures are affected by the carbonated water environment, and its degradation mechanism is significantly different from the carbonization in the atmospheric environment. This study is to reveal the deterioration mechanism of tunnel lining structure under the action of the carbonated water. Experiments were conducted to study the accelerated erosion of cement mortar in the atmospheric and carbonated water environments, respectively. The results show that the carbonization depth of cement mortar in the carbonated water environment is obviously less than that in the atmospheric environment, and its carbonization coefficient is only 0.18 times that in the atmospheric environment. In the atmospheric environment, the volume of pores in cement mortar is reduced due to carbonization, whereas the uniaxial compressive strength and elastic modulus of cement mortar are sharply increased. However, in the carbonated water environment, the loss of Ca element is exacerbated, and the carbonization results in a lower content of Ca in the carbonized layer. As a result, the pore structure of the cement mortar is destroyed, leading to an increase in the pore volume of the cement mortar. Finally, both the uniaxial compressive strength and elastic modulus of the cement mortar are decreased in the carbonated water environment, especially the elastic modulus. The research results reveal that in the carbonated water environment, the loss of Ca is accelerated in the tunnel lining structure, resulting in an increase in the porosity and a decrease in the strength. Ultimately, the deterioration of the tunnel lining structure occurs, which affects the long-term safe operation of the tunnel lining structure.

Key words: carbonated water environment, nitrogen adsorption, erosion, lining structure, experiment study

中图分类号: 

  • TV 554
[1] 王珂, 盛金昌, 郜会彩, 田晓丹, 詹美礼, 罗玉龙, . 应力−渗流侵蚀耦合作用下粗糙裂隙渗流特性研究[J]. 岩土力学, 2020, 41(S1): 30-40.
[2] 周翠英, 梁彦豪, 刘春辉, 刘镇, . 天然红层风化土成膜试验研究[J]. 岩土力学, 2020, 41(S1): 132-138.
[3] 褚峰, 张宏刚, 邵生俊, 邓国华. 人工合成类废布料纤维纱加筋黄土力学变形性质及抗溅蚀特性试验研究[J]. 岩土力学, 2020, 41(S1): 394-403.
[4] 张庆艳, 陈卫忠, 袁敬强, 刘奇, 荣驰, . 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41(6): 1911-1922.
[5] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[6] 刘成禹, 陈博文, 罗洪林, 阮家椿, . 满流条件下管道破损诱发渗流侵蚀的试验研究[J]. 岩土力学, 2020, 41(1): 1-10.
[7] 赵晓彦, 万宇豪, 张肖兵. 汶马高速公路千枚岩堆积体岩块定向性试验研究[J]. 岩土力学, 2020, 41(1): 175-184.
[8] 李志成, 冯先导, 沈立龙, . 沉管隧道含垄沟卵石垫层变形特性试验研究[J]. 岩土力学, 2019, 40(S1): 189-194.
[9] 王冲, 胡大伟, 任金明, 周辉, 卢景景, 刘传新, . 侵蚀性环境对地下结构渗透和力学特性影响研究[J]. 岩土力学, 2019, 40(9): 3457-3464.
[10] 吴凤元, 樊赟赟, 陈剑平, 李军, . 基于不同侵蚀模型的高速崩滑碎屑 流动力过程模拟分析[J]. 岩土力学, 2019, 40(8): 3236-3246.
[11] 刘维宁, 姜博龙, 马蒙, 高健, . 周期性排桩设计频段隔振原理性试验研究[J]. 岩土力学, 2019, 40(11): 4138-4148.
[12] 张峰瑞, 姜谙男, 江宗斌, 张广涛. 化学腐蚀-冻融综合作用下岩石损伤蠕变 特性试验研究[J]. 岩土力学, 2019, 40(10): 3879-3888.
[13] 刘 钟, 张楚福, 张 义, 吕美东, 许国平, 陈天雄, . 囊式扩体锚杆在宁波地区的现场试验研究[J]. 岩土力学, 2018, 39(S2): 295-301.
[14] 尹君凡,雷 勇,陈秋南,刘一新,邓加政,. 偏心荷载下溶洞顶板冲切破坏上限分析[J]. , 2018, 39(8): 2837-2843.
[15] 冯上鑫,柴军瑞,许增光,覃 源,陈 玺. 基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J]. , 2018, 39(8): 2886-2894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!