岩土力学 ›› 2019, Vol. 40 ›› Issue (5): 1983-1993.doi: 10.16285/j.rsm.2018.0759

• 岩土工程研究 • 上一篇    下一篇

考虑降雨作用的气温升高对多年冻土 活动层水热影响机制

张明礼1, 2, 3,温 智2,董建华1,王得楷3,侯彦东1, 王 斌1,郭宗云1,魏浩田1   

  1. 1. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室,甘肃 兰州 730050; 2. 中国科学院西北生态环境资源研究院 冻土工程国家重点实验室,甘肃 兰州 730000; 3. 甘肃省科学院 地质自然灾害防治研究所,甘肃 兰州 730000
  • 收稿日期:2018-05-03 出版日期:2019-05-11 发布日期:2019-06-02
  • 通讯作者: 温智,男,1976年生,博士,研究员,博士生导师,主要从事冻土力学与寒区工程方面的研究工作。E-mail:wenzhi@lzb.ac.cn E-mail:mingli_0919@126.com
  • 作者简介:张明礼,男,1987年生,博士(后),副教授,硕士生导师,主要从事冻土工程方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No. 41801033,No. 41471061,No. 51778275);甘肃省科技计划资助——青年科技基金(No. 17JR5RA115);甘肃省高等学校科研项目(No.055003)。

Mechanism of climate warming on thermal-moisture dynamics of active permafrost layer considering effect of rainfall

ZHANG Ming-li1, 2, 3, WEN Zhi2, DONG Jian-hua1, WANG De-kai3, HOU Yan-dong1, WANG Bin1, GUO Zong-yun 1, WEI Hao-tian1   

  1. 1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; 3. Geological Hazards Prevention Institute, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2018-05-03 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41801033, 41471061, 51778275), the Science and Technology Foundation for Youth of Gansu Province (17JR5RA115) and the Research Program for Higher Wducation of Gansu Province (055003).

摘要: 近50 a青藏高原暖湿化趋势显著,水热边界条件的改变必然影响多年冻土的稳定性和高原生态环境的演变。已有研究主要关注气候升温对冻土温度场的影响,而对升温过程伴随的活动层水分变化研究较少。基于土壤-地表-大气水分和能量平衡的冻土水-汽-热耦合模型,以青藏高原北麓河地区2013年实测气象资料为模型驱动数据,研究在降雨不变,气温不变、气温升高1℃和升高2℃情况下活动层水热响应机制与过程。结果表明:气候升温通过改变地表能量与水分平衡过程和土壤内部水热运移分量影响多年冻土水热过程。气温升高引起地表净辐射、蒸发潜热和土壤热通量增大,而地表降雨入渗和感热通量减少;气温升高会降低土壤含水率和土壤导水系数,但温度梯度及与温度梯度相关的水分和能量分量相应增大,而与水势梯度相关的水分和能量分量相对减少;升温对土壤温度场的影响比水分场明显,影响范围也更深;随着气温升高,地表蒸发量和活动层厚度增大,气温升高加速了冻土的退化过程,与降雨增加对冻土的热稳定性影响相反。 关 键 词:多年冻土;活动层;水分运移;热传递;气候变化;降雨

关键词: 多年冻土, 活动层, 水分运移, 热传递, 气候变化, 降雨

Abstract: There is an obvious trend of climate warming and wetting on the Qinghai-Tibet Plateau during the past fifty years. Climate changes in air temperature or precipitation will inevitably influence the stability of permafrost. Previous studies mainly focus on the thermal influence of climate warming, but little is known about the induced rainfall infiltration and the hydrothermal response mechanism. Based on the meteorological data observed at Beiluhe observation station during 2013, the established water-vapor-heat transport model is used to predict the response under 1℃ and 2 ℃ increment of temperature, which considering the influences of rainfall. Climate change influences the thermal-moisture of permafrost mainly by changing the surface energy budget and soil hydrothermal transport components. The results show that climate warming greatly increased the surface net radiation, latent heat of evaporation and soil heat flux, decreased the sensible heat and rainfall infiltration. The rising air temperature reduces the soil moisture and soil hydraulic conductivity. Temperature gradient increases dramatically with temperature arising, further increases the moisture and energy components and reduces the components related to the water potential gradient. Climate warming increases the surface evaporation and thickness of active layer and accelerates the degradation of permafrost, which is contrary to the thermal effects of rainfall increasing.

Key words: permafrost, active layer, water transport, heat transfer, climate change, rainfall

中图分类号: 

  • TU 445
[1] 赵久彬, 刘元雪, 何少其, 杨骏堂, 柏准, . 三峡库区阶跃变形滑坡水平位移与降雨量 数学统计模型[J]. 岩土力学, 2020, 41(S1): 305-311.
[2] 张明礼, 温智, 董建华, 王得楷, 岳国栋, 王斌, 高樯. 考虑降雨作用的多年冻土区不同地表土质 活动层水热过程差异分析[J]. 岩土力学, 2020, 41(5): 1549-1559.
[3] 简文彬, 黄聪惠, 罗阳华, 聂闻. 降雨入渗下非饱和坡残积土湿润锋运移试验研究[J]. 岩土力学, 2020, 41(4): 1123-1133.
[4] 黄晓虎, 易武, 黄海峰, 邓永煌. 优势流入渗与坡体变形关系研究及应用[J]. 岩土力学, 2020, 41(4): 1396-1403.
[5] 史振宁, 戚双星, 付宏渊, 曾铃, 何忠明, 方睿敏, . 降雨入渗条件下土质边坡含水率分 布与浅层稳定性研究[J]. 岩土力学, 2020, 41(3): 980-988.
[6] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398.
[7] 刘丽, 吴羊, 陈立宏, 刘建坤, . 基于数值模拟的湿润锋前进法测量精度分析[J]. 岩土力学, 2019, 40(S1): 341-349.
[8] 陈卫忠, 雷江, 于洪丹, 李翻翻, 马永尚, 闫宪洋, . 黏土岩饱和过程中水分运移规律试验研究[J]. 岩土力学, 2019, 40(9): 3327-3334.
[9] 江强强, 焦玉勇, 骆进, 王浩, . 能源桩传热与承载特性研究现状及展望[J]. 岩土力学, 2019, 40(9): 3351-3362.
[10] 陈宇龙, 内村太郎, . 基于弹性波波速的降雨型滑坡预警系统[J]. 岩土力学, 2019, 40(9): 3373-3386.
[11] 黄晓虎, 雷德鑫, 夏俊宝, 易武, 张鹏, . 降雨诱发滑坡阶跃型变形的预测分析及应用[J]. 岩土力学, 2019, 40(9): 3585-3592.
[12] 詹良通, 胡英涛, 刘小川, 陈捷, 王瀚霖, 朱斌, 陈云敏. 非饱和黄土地基降雨入渗离心模型试验 及多物理量联合监测[J]. 岩土力学, 2019, 40(7): 2478-2486.
[13] 王宏磊, 孙志忠, 刘永智, 武贵龙, . 青藏铁路含融化夹层路基热力响应监测分析[J]. 岩土力学, 2019, 40(7): 2815-2824.
[14] 汪华斌, 李建梅, 金怡轩, 周 博, 周 宇, . 降雨诱发边坡破坏数值模拟两个关键问题 的解决方法[J]. 岩土力学, 2019, 40(2): 777-784.
[15] 江强强, 焦玉勇, 宋亮, 王浩, 谢壁婷, . 降雨和库水位联合作用下库岸滑坡模型试验研究[J]. 岩土力学, 2019, 40(11): 4361-4370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!