岩土力学 ›› 2018, Vol. 39 ›› Issue (S2): 473-479.doi: 10.16285/j.rsm.2018.0886

• 测试技术 • 上一篇    下一篇

现场岩体三轴流变试验设备研制

刘泉声1, 2,罗慈友1, 3,陈自由4,刘 鹤1, 3,桑昊旻1, 3,万文恺1, 3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 2. 武汉大学 岩土与结构工程安全湖北省重点实验室,湖北 武汉 430072; 3. 中国科学院大学,北京 100049;4. 淮南矿业(集团)有限责任公司顾桥矿,安徽 淮南 232131
  • 收稿日期:2018-05-19 出版日期:2018-12-21 发布日期:2019-01-06
  • 通讯作者: 罗慈友,男,1989年生,博士研究生,主要从事深部岩石流变力学特性的研究工作。E-mail: ciyouluo@gmail.com E-mail:liuqs@whrsm.ac.cn
  • 作者简介:刘泉声,男,1962年生,博士,研究员,博士生导师,主要从事岩石力学与地下工程方面的教学与研究工作。
  • 基金资助:
    国家重点基础研究发展计划(“973”)项目(No.2015CB058102);国家自然科学基金项目(No.51474205,No. 2016YFC0801405)。

Development of triaxial rheological testing equipment for in-situ rock mass

LIU Quan-sheng1, 2, LUO Ci-you1, 3, CHEN Zi-you4, LIU He1, 3, SANG Hao-min1, 3, WANG Wen-kai1, 3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. Key Laboratory of Safety for Geotechnical and Structural Engineering of Hubei Province, Wuhan University, Wuhan, Hubei 430072, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Guqiao Coal Mine, Huainan Mining Industry (Group) Limited Liability Company, Huainan, Anhui 232131, China
  • Received:2018-05-19 Online:2018-12-21 Published:2019-01-06
  • Supported by:
    This work was supported by the National Key Basic Research Program of China(2015CB058102) and the National Natural Science Foundation of China(51474205, 2016YFC0801405).

摘要: 深部煤矿巷道围岩存在大量软弱破碎岩体,其流变特性对井下的采矿工程具有重要的影响。为研究深部煤矿巷道围岩软弱破碎岩体的流变力学特性,研制了现场岩体三轴流变试验设备,主要包括加压稳压系统、位移测量装置和整体框架三部分,通过矿用防爆电动液压泵站驱动和控制液压油缸实现对岩体试样的加卸压和保压功能,并由位移测量装置测得岩体试样的各个方向变形,整体框架实现各部分的连接及系统荷载的传递。采用该设备对煤矿井下巷道底板上现场制备的岩体试样进行分级加载蠕变试验。结果表明,该设备可实现对在煤矿井下巷道底板上现场制备的岩体试样的压缩蠕变试验,岩体试样在同一级应力水平下表现出不同的阶段流变特征,在高低应力水平下的流变特征也各不相同,应力水平增加到破裂应力时岩体试样迅速进入加速蠕变阶段并很快发生破坏。

关键词: 现场岩体, 流变试验, 岩体试样, 蠕变, 设备研制

Abstract: The rheological properties of the weak and fractured rock masses surrounding the deep coal roadway can exert a significant influence on the mining activities. To study their rheological mechanisms and characteristics, a triaxial rheological testing equipment for in-situ rock mass is developed. This testing equipment mainly consists of three parts, including the loading system, displacement measurement device and the main frame. The loading, unloading, pressure-maintaining procedures on the rock mass sample are fulfilled using a mine-used explosion-proof electric hydraulic pump station, and the deformations of the rock mass sample in every direction are measured using a displacement measurement device. The connection of the equipments and the transfer of the system load are fulfilled using the main frame. By using this testing equipment, the rheological test in step-by-step loading mode is conducted on the in-situ rock mass sample in a deep coal roadway. The results show that this testing equipment can surely fulfill the rheological tests on the in-situ rock mass sample located at the roadway floor in deep coal mines. The rheological process of the in-situ rock mass sample can be divided into several stages with different rheological characteristics and the rheological characteristics under high or low stress are also different. When the exerted load increases to a failure stress value, the rock mass sample will enter the accelerated creep stage quickly and then fail rapidly.

Key words: in-situ rock mass, rheological test, rock mass sample, creep, equipment development

中图分类号: 

  • TU452
[1] 庄心善, 赵汉文, 王俊翔, 黄勇杰, 胡智. 循环荷载下重塑弱膨胀土滞回曲线 形态特征定量研究[J]. 岩土力学, 2020, 41(6): 1845-1854.
[2] 陈琼, 崔德山, 王菁莪, 刘清秉. 不同固结状态下黄土坡滑坡滑 带土的蠕变试验研究[J]. 岩土力学, 2020, 41(5): 1635-1642.
[3] 徐毅青, 邓绍玉, 葛琦. 锚索预应力初期与长期损失的预测模型研究[J]. 岩土力学, 2020, 41(5): 1663-1669.
[4] 韩超, 庞德朋, 李德建. 砂岩分级加卸载蠕变试验过程能量演化分析[J]. 岩土力学, 2020, 41(4): 1179-1188.
[5] 王青元, 刘杰, 王培涛, 刘飞, . 冲击扰动诱发蠕变岩石加速失稳破坏试验[J]. 岩土力学, 2020, 41(3): 781-788.
[6] 陈卫忠, 李翻翻, 雷江, 于洪丹, 马永尚, . 热−水−力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2): 379-388.
[7] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[8] 王立业, 周凤玺, 秦虎, . 饱和盐渍土分数阶蠕变模型及试验研究[J]. 岩土力学, 2020, 41(2): 543-551.
[9] 雷江, 陈卫忠, 李翻翻, 于洪丹, 马永尚, 谢华东, 王富刚, . 引红济石引水隧洞围岩力学特性研究[J]. 岩土力学, 2019, 40(9): 3435-3446.
[10] 李晶晶, 孔令伟, . 膨胀土卸荷蠕变特性及其非线性蠕变模型[J]. 岩土力学, 2019, 40(9): 3465-3475.
[11] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[12] 曹 梦, 叶剑红, . 中国南海钙质砂蠕变-应力-时间四参数数学模型[J]. 岩土力学, 2019, 40(5): 1771-1777.
[13] 朱赛楠, 殷跃平, 李 滨, . 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40(4): 1377-1386.
[14] 李 鑫, 刘恩龙, 侯 丰, . 考虑温度影响的冻土蠕变本构模型[J]. 岩土力学, 2019, 40(2): 624-631.
[15] 杨秀荣, 姜谙男, 王善勇, 张峰瑞, . 冻融循环条件下片麻岩蠕变特性试验研究[J]. 岩土力学, 2019, 40(11): 4331-4340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!