岩土力学 ›› 2019, Vol. 40 ›› Issue (8): 3107-3114.doi: 10.16285/j.rsm.2018.0938

• 基础理论与实验研究 • 上一篇    下一篇

絮凝-固化联合处理超高含水率 吹填淤泥浆的试验研究

郑耀林1,章荣军1, 2,郑俊杰1,董超强1,陆展1   

  1. 1. 华中科技大学 岩土与地下工程研究所,湖北 武汉 430074;2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
  • 收稿日期:2018-05-29 出版日期:2019-08-12 发布日期:2019-08-25
  • 通讯作者: 章荣军,男,1983年生,博士,副教授,主要从事疏浚淤泥固化与再生利用方面的研究工作。E-mail: ce_zhangrj@hust.edu.cn E-mail: zheng_yl@hust.edu.cn
  • 作者简介:郑耀林,男,1995年生,硕士研究生,主要从事岩土工程方面的研究工作。
  • 基金资助:
    国家重点研发计划(No. 2016YFC0800200);国家自然科学基金(No. 51678266);软弱土与环境土工教育部重点实验室(浙江大学)开放基金(No. 2018P05)。

Experimental study of flocculation-solidification combined treatment of hydraulically dredged mud at extra high-water content

ZHENG Yao-lin1, ZHANG Rong-jun1, 2, ZHENG Jun-jie1, DONG Chao-qiang1, LU Zhan1   

  1. 1. Institute of Geotechnical and Underground Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; 2. Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2018-05-29 Online:2019-08-12 Published:2019-08-25
  • Supported by:
    This work was supported by the National Key R&D Program of China (2016YFC0800200), the National Natural Science Foundation of China (NSFC) (51678266) and the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University), Ministry of Education(2018P05).

摘要: 采用吹填淤泥作为滩涂围垦填料既能有效解决砂石等理想填料资源的短缺难题,又能避免大量吹填泥弃置所带来的环境负面影响,具有可观经济效益和可持续发展性。但吹填淤泥往往呈流浆或浮泥态,含水率超高,强度低,渗透性差,后续地基处理人员和设备难以直接进场。鉴于此,提出了一种絮凝-固化联合方法处理表层吹淤泥浆形成硬壳层(工作平台)的新思路,并开展室内试验验证了其技术可行性。首先,通过针筒滴定法确定了处理吹填淤泥的絮凝剂(PAM)类型及最佳掺量;然后,通过模型试验模拟了不同配比的絮凝-固化联合处理淤泥浆的絮凝沉积过程,并开展十字板剪切试验测定不同龄期土样的抗剪强度和含水率。结果显示,在同样固化剂掺量情况下,使用絮凝-固化联合处理法代替传统单一水泥固化法,能使试样的不排水抗剪强度至少提高5倍以上,证明了采用絮凝-固化联合方法处理表层吹淤泥浆形成表层工作平台的可行性。

关键词: 吹填淤泥, 絮凝, 固化, 抗剪强度, 含水率

Abstract: The use of hydraulically dredged mud as filling material for land reclamation can not only effectively resolve the shortage problem of ideal filling material such as sand and gravel, but also avoid the negative impact caused by the large amount of dredged mud disposal. However, the hydraulically dredged mud is usually in slurry-like state and has extremely high-water content, low strength and poor permeability. It is difficult to directly access the construction site for the personnel and equipment in subsequent ground improvement. Therefore, this paper proposes a flocculation-solidification combined method for the treatment of surface slurry-like mud to form a working platform. A large number of laboratory tests are conducted to verify the feasibility of the proposed method. First, the reasonable type and optimal dosage of flocculant (PAM) for the flocculation-solidification combined method are determined by syringe titration tests. Then, the flocculation and sedimentation process is simulated through the model tests with different mixing proportions. Vane shear tests are performed to measure the shear strength and water content of the samples at different curing times. The results show that, in comparison with the traditional pure cement solidification method, the flocculation-solidification combined method can enhance the undrained shear strength by more than five times. The results verify the feasibility of the flocculation-solidification combined method.

Key words: hydraulically dredged mud, flocculation, solidification, strength, water content

中图分类号: 

  • TU 447
[1] 桂跃, 吴承坤, 赵振兴, 刘声钧, 刘锐, 张秋敏. 微生物分解有机质作用对泥炭土工程性质的影响[J]. 岩土力学, 2020, 41(S1): 147-155.
[2] 刘杰, 杨玉婳, 姚海林, 卢正, 岳婵, . 基于不同改性方法的分散性黏土处治试验研究[J]. 岩土力学, 2020, 41(S1): 163-170.
[3] 邹先坚, 王益腾, 王川婴. 钻孔图像中岩石结构面三维形貌特征及 优势抗滑方向研究[J]. 岩土力学, 2020, 41(S1): 290-298.
[4] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[5] 瑜璐, 杨庆, 杨钢, 张金利. 塑性极限分析鱼雷锚锚尖贯入阻力[J]. 岩土力学, 2020, 41(6): 1953-1962.
[6] 杨凯旋, 侯天顺. 击实试验类型对EPS颗粒轻量土击实特性的 影响规律[J]. 岩土力学, 2020, 41(6): 1971-1982.
[7] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[8] 李敏, 孟德骄, 姚昕妤. 基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求[J]. 岩土力学, 2020, 41(4): 1203-1210.
[9] 杜宇翔, 盛谦, 王帅, 付晓东, 罗红星, 田明, 王立纬, 梅鸿儒. 昔格达组半成岩微观结构与力学性质研究[J]. 岩土力学, 2020, 41(4): 1247-1258.
[10] 刘建民, 邱月, 郭婷婷, 宋文智, 谷川, . 饱和粉质黏土静剪强度与振动后 静剪强度对比研究[J]. 岩土力学, 2020, 41(3): 773-780.
[11] 史振宁, 戚双星, 付宏渊, 曾铃, 何忠明, 方睿敏, . 降雨入渗条件下土质边坡含水率分 布与浅层稳定性研究[J]. 岩土力学, 2020, 41(3): 980-988.
[12] 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654.
[13] 李小刚, 朱长歧, 崔翔, 张珀瑜, 王睿, . 含碳酸盐混合砂的三轴剪切试验研究[J]. 岩土力学, 2020, 41(1): 123-131.
[14] 张晨阳, 谌民, 胡明鉴, 王新志, 唐健健, . 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(S1): 195-202.
[15] 王欢, 陈群, 王红鑫, 张文举, . 不同压实度和基质吸力的粉煤灰三轴试验研究[J]. 岩土力学, 2019, 40(S1): 224-230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!