岩土力学 ›› 2019, Vol. 40 ›› Issue (6): 2085-2098.doi: 10.16285/j.rsm.2018.0946

• 基础理论与实验研究 • 上一篇    下一篇

深部硬岩矩形隧洞围岩板裂破坏的试验模拟研究

宫凤强1, 2,伍武星1,李天斌2,司雪峰1   

  1. 1. 中南大学 资源与安全工程学院,湖南 长沙 410083;2. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
  • 收稿日期:2018-05-31 出版日期:2019-06-11 发布日期:2019-06-20
  • 作者简介:宫凤强,男,1979年生,博士,副教授,博士生导师,主要从事深部岩石动力学方面的教学和研究工作
  • 基金资助:
    国家自然科学基金(No.41472269);地质灾害防治与地质环境保护国家重点实验室开放基金资助(No.SKLGP2018K010);中南大学中央高校基本科研业务费专项资金资助(No.2019zzts673)

Simulation experimental study of spalling failure of surrounding rock of rectangular tunnel of deep hard rock

GONG Feng-qiang1, 2, WU Wu-xing1, LI Tian-bin2, SI Xue-feng1   

  1. 1. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China; 2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Received:2018-05-31 Online:2019-06-11 Published:2019-06-20
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41472269), the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (SKLGP2018K010) and the Fundamental Research Funds for the Central Universities of Central South University (2019zzts673).

摘要: 为了深入认识深部硬岩矩形隧洞围岩板裂破坏的发生机制,利用花岗岩材料加工含预制矩形孔洞(40 mm×40 mm)的立方体试样(100 mm×100 mm×100 mm),并采用TRW?3000岩石真三轴电液伺服诱变试验机进行了模拟试验研究。模拟试验中首先以深部1 000 m的地应力条件作为初始加载应力状态,保持孔洞径向和轴向的水平向应力不变,然后在竖直向加载直至孔洞两侧洞壁围岩发生破坏,并保证试样整体始终处于稳定状态。加载过程中利用岩样内部结构破坏实时视频监控系统,进行全程的实时记录和监测。试验结果表明,在竖直向为最大主应力和水平轴向为中间主应力的情况下,矩形孔洞两侧洞壁围岩整体发生明显的板裂破坏,破坏区域呈对称状,而顶板和底板始终保持稳定状态。侧壁围岩的破坏方向平行于竖直向,呈现典型的张拉板裂状破坏特征。整个破坏过程划分为平静期阶段、洞壁两侧上下肩角处颗粒弹射阶段、侧壁围岩裂纹扩展阶段和裂纹贯通板裂破坏阶段。当进入到裂纹贯通板裂破坏阶段时,无论是加载还是保载过程,板裂破坏都可能持续发展。试验过程中,试样洞壁两侧围岩的板裂破坏整体上呈现静态破坏模式,而且破坏区域沿水平方向逐渐向洞壁深部发展,最终形成沿轴向的贯穿型对称弧形槽。

关键词: 深部围岩, 板裂, 矩形隧洞, 真三轴试验, 三维高应力, 弧形槽

Abstract: This study is aimed to investigate the spalling failure mechanism of surrounding rock in the rectangular tunnel of deep hard rock. A cubic granite specimen (100 mm×100 mm×100 mm) was prepared with a precast rectangular hole (40 mm×40 mm), and then the simulation test was carried out by using the TRW-3000 true triaxial electro-hydraulic servo mutagenesis testing machine. In the simulation test, the in-situ stress of the depth of 1 000 m was selected as the initial loading stress state, and the horizontal stresses of the rectangular hole were kept constant in the radial and axial directions. After that, the vertical loading was applied until the surrounding rock on both sidewalls of the hole was destroyed, and the whole specimen remained in a stable state. During the loading process, a real-time video surveillance system was employed to monitor the failure process of the internal structure of the rock specimen. The results showed that when the maximum principal stress was at the vertical direction and the intermediate principal stress was at the horizontal axis, the obvious spalling failure appeared on the surrounding rock of both sidewalls of the rectangular hole. Moreover, it was found that the failure zone of the surrounding rock was symmetrical, whereas the roof and the floor remained stable. Meanwhile, the failure of surrounding rock was parallel to the vertical direction, showing typical tensile cracking and spalling characteristics. The entire failure process was divided into the calm stage, the particle ejection stage on the shoulder angles of the hole, the sidewall crack propagation stage and the crack penetration spalling stage at both sidewalls. When entering the crack penetration spalling stage, the spalling failure may continue to develop regardless of the loading or load-holding process. During the test, the spalling failure of the surrounding rock on the both sidewalls of the specimen presented a static failure mode. Besides, the failure zone gradually developed towards the deep part of the wall along the horizontal direction, and finally formed a penetrating symmetric arc notch along the axial direction.

Key words: deep surrounding rock, spalling, rectangular tunnel, true triaxial test, three-dimensional high stress, arc notch

中图分类号: 

  • TU 458
[1] 罗丹旎, 苏国韶, 何保煜, . 不同饱水度花岗岩的真三轴岩爆试验研究[J]. 岩土力学, 2019, 40(4): 1331-1340.
[2] 肖晓春, 丁 鑫, 潘一山, 吕祥锋, 吴 迪, 王 磊, 樊玉峰, . 含瓦斯煤岩真三轴多参量试验系统研制及应用[J]. 岩土力学, 2018, 39(S2): 451-462.
[3] 张坤勇,李 威,Charkley Nai Frederick,陈 恕,. 小主应力方向加载条件下的掺砾黏土真三轴试验[J]. , 2018, 39(9): 3270-3276.
[4] 李凯达,胡少斌,李小春,伍 键,樊清怡,伍海清,. 单相流体对砂岩强度特性的影响[J]. , 2018, 39(5): 1789-1795.
[5] 司雪峰, 宫凤强,罗 勇,李夕兵, . 深部三维圆形洞室岩爆过程的模拟试验[J]. , 2018, 39(2): 621-634.
[6] 周 喻, 孙 铮, 王 莉, 王 宇, 丁银平, . 单侧限压缩下预制裂隙试样力学特性及板裂化 机制细观研究[J]. 岩土力学, 2018, 39(12): 4385-4394.
[7] 姜景山,程展林,左永振,丁红顺,. 三维应力状态下粗粒料强度特性试验研究[J]. , 2018, 39(10): 3581-3588.
[8] 姜婷婷,张建华,黄 刚, . 煤岩水力压裂裂缝扩展形态试验研究[J]. , 2018, 39(10): 3677-3684.
[9] 王志刚,郭晓菲. 双河煤矿采动巷道顶板裂隙的分形研究[J]. , 2017, 38(8): 2377-2384.
[10] 方瑾瑾,邵生俊,冯以鑫,. 真三轴条件下Q3原状黄土的吸力变化特性研究[J]. , 2017, 38(4): 934-942.
[11] 陈昊祥,戚承志,李凯锐,徐 琛,刘天添,. 深部巷道围岩分区破裂的非线性连续相变模型研究[J]. , 2017, 38(4): 1032-1040.
[12] 张 铎,刘 洋,吴顺川 , . 控制应力路径散体材料真三轴试验强度特征的离散元模拟与细观机制分析[J]. , 2016, 37(S1): 509-520.
[13] 宋新江,徐海波,周文渊,王 伟,. 水泥土应力-应变特性真三轴试验研究[J]. , 2016, 37(9): 2489-2495.
[14] 代金秋,苏仲杰,赵明超,项宇航,. 粉质黏土的真三轴试验及强度特性研究[J]. , 2016, 37(9): 2534-2540.
[15] 周永强 ,盛 谦,刘芳欣,付晓东,朱泽奇,. 一种修正的Drucker-Prager屈服准则[J]. , 2016, 37(6): 1657-1664.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!