岩土力学 ›› 2019, Vol. 40 ›› Issue (9): 3645-3655.doi: 10.16285/j.rsm.2018.0958

• 数值分析 • 上一篇    下一篇

P波作用下跨断层隧道轴线地震响应分析

赵密1,欧阳文龙1,黄景琦1, 2,杜修力1,赵旭1   

  1. 1. 北京工业大学 城市与工程安全减灾教育部重点实验室,北京 100124;2. 北京科技大学 土木与资源工程学院,北京 100083
  • 收稿日期:2018-06-04 出版日期:2019-09-10 发布日期:2019-09-08
  • 通讯作者: 黄景琦,男,1988年生,博士,讲师,主要从事岩体隧道等地下结构抗震性能研究。E-mail: huangjingqi11@163.com E-mail:zhaomi@bjut.edu.cn
  • 作者简介:赵密,男,1980年生,博士,教授,博士生导师,主要从事土结构相互作用研究。
  • 基金资助:
    国家重点基础研究发展计划(973计划)(No.2015CB057902);国家自然科学基金青年基金项目(No.51608015);中央高校基本科研业务费专项资金资助项目(No.FRF-TP-17-074A1)。

Analysis of axis dynamic response of rock tunnels through fault fracture zone under P waves of earthquake

ZHAO Mi1, OUYANG Wen-long1, HUANG Jing-qi1, 2, DU Xiu-li1, ZHAO Xu1   

  1. 1. The Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China; 2. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2018-06-04 Online:2019-09-10 Published:2019-09-08
  • Supported by:
    This work was supported by the National Basic Research Program of China(973 Program) (2015CB057902); the Young Foundation of the National Natural Science of China (51608015) and the Fundamental Research Funds for the Central Universities (FRF-TP-17-074A1).

摘要: 基于近场波动有限元方法并结合黏弹性人工边界条件,针对3D断层场地,通过求解等效二维场地地震响应,从而获得3D场地地震动输入的自由场响应,并将自由场响应转化为3D模型边界面上的等效节点力,从而建立含断层3D场地P波入射的倾斜输入方法。自由场算例验证所提方法具有较好精度,进而基于建立的输入方法,开展了跨断层隧道地震响应的数值模拟研究。数值模拟结果表明:在P波作用下,隧道跨断层部位处于拉、压、剪切的复杂受力状态,且断层处的隧道衬砌地震响应明显大于其他部位的地震响应;围岩的力学性质与断层的力学性质相差越大,断层处衬砌的地震响应放大越明显;断层处衬砌地震响应随断层深度的增加而增加。另外,跨断层隧道的地震响应受P波入射角度的影响较大,随P波入射角度的增加,断层处隧道衬砌的轴力、弯矩先增加后减小,而剪力具有逐渐减小的规律。

关键词: 隧道, 断层, P波, 时域显式有限元, 黏弹性人工边界

Abstract: On the basis of the time-domain wave method coupling the explicit finite element method with the viscous-spring artificial boundary condition, the input seismic motion was converted into the equivalent nodal force acted on the viscous-spring artificial boundary condition. For the three-dimensional (3D) fault site, the free-field response of the 3D field model was obtained by solving the seismic response of the equivalent two-dimensional field model, and the free-field response was converted into the equivalent node force of the 3D model. Subsequently, the oblique-incidence input method of P waves was proposed for the 3D fault site in the study. The precision of the present approach was verified by half-space numerical examples. Finally, the proposed method was applied to investigate the influence of fault on the seismic response of a long lined tunnel through fault subjected to P waves. The numerical results indicate that the seismic response of tunnel lining near the fault is amplified greatly. The tunnel is in the complex stress state of tensile, compression and shear under P waves. The seismic response increases with the weakening of the mechanical properties of the fault, and the depth of fault also influences the seismic response of the tunnel. With increasing the incident angle of earthquake waves, the axial force and bending moment of the tunnel lining near the fault increase first and then decrease. However, the shear force gradually decreases with increasing the incident angle.

Key words: rock tunnels, fault, P waves, time-domain wave method, viscous-spring artificial boundary condition

中图分类号: 

  • TU435
[1] 徐日庆, 程康, 应宏伟, 林存刚, 梁荣柱, 冯苏阳, . 考虑埋深与剪切效应的基坑卸荷下卧 隧道的形变响应[J]. 岩土力学, 2020, 41(S1): 195-207.
[2] 郑刚, 栗晴瀚, 程雪松, 哈达, 赵悦镔. 承压层快速减压与回灌应用于隧道抢险的理论与设计[J]. 岩土力学, 2020, 41(S1): 208-216.
[3] 杨括宇, 陈从新, 夏开宗, 宋许根, 张伟, 张褚强, 王田龙. 崩落法开采金属矿巷道围岩破坏机制的断层效应[J]. 岩土力学, 2020, 41(S1): 279-289.
[4] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[5] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[6] 房昱纬, 吴振君, 盛谦, 汤华, 梁栋才, . 基于超前钻探测试的隧道地层智能识别方法[J]. 岩土力学, 2020, 41(7): 2494-2503.
[7] 张庆艳, 陈卫忠, 袁敬强, 刘奇, 荣驰, . 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41(6): 1911-1922.
[8] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[9] 郑立夫, 高永涛, 周喻, 田书广, . 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(6): 2110-2121.
[10] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[11] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[12] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[13] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[14] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[15] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!