岩土力学 ›› 2019, Vol. 40 ›› Issue (9): 3300-3308.doi: 10.16285/j.rsm.2018.1029

• 基础理论与实验研究 • 上一篇    下一篇

致密砂岩高围压和高孔隙水压下渗透率 演化规律及微观机制

丁长栋1, 2,张杨3,杨向同3,胡大伟1, 2,周辉1, 2,卢景景1, 2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 中国石油塔里木油田公司,新疆 库尔勒 841000
  • 收稿日期:2018-06-14 出版日期:2019-09-10 发布日期:2019-09-03
  • 通讯作者: 胡大伟,男,1981年生,博士,研究员,主要从事地下工程多场耦合方面的研究工作。E-mail: dwhu@whrsm.ac.cn E-mail:dingchangdong17@mails.ucas.ac.cn
  • 作者简介:丁长栋,男,1994年生,博士研究生,主要从事深部岩体流固耦合机制及试验研究
  • 基金资助:
    国家重点研发计划资助(No.2018YFC0809600,No.2018YFC0809601);国家自然科学基金资助项目(No.51579093,No.51479193);湖北省技术创新专项重大项目(No.2017AAA128);中国科学院率先行动“百人计划”项目资助。

Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism

DING Chang-dong1,2, ZHANG Yang3, YANG Xiang-tong3, HU Da-wei1,2, ZHOU Hui1,2, LU Jing-jing1,2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. PetroChina Tarim Oilfield Company, Korla, Xinjiang 841000, China
  • Received:2018-06-14 Online:2019-09-10 Published:2019-09-03
  • Supported by:
    This work was supported by the National Key R&D Program of China (2018YFC0809600, 2018YFC0809601), the National Natural Science Foundation of China (51779252, 51479193), the Major Projects of Technical Innovation in Hubei (2017AAA128) and the Pioneer Hundred Talents Program of Chinese Academy of Science.

摘要: 深部岩石工程具有高地应力和高水头压力的特点。为了研究岩石在高围压和高孔隙水压条件下渗透率演化规律,选取致密砂岩开展不同围压条件下变孔隙水压的渗流试验。研究结果表明:(1)在所研究的围压范围内(0~50 MPa),随孔隙压力增加,渗透率依次呈现3种不同的变化趋势,即快速增长阶段(围压为10~20 MPa)、缓慢增长阶段(围压为30~40 MPa)和保持恒定阶段(围压为50 MPa);在围压卸载时,由于高围压作用使试样内部产生不可逆变形,导致渗透率具有明显的不可恢复现象,且随围压降低,渗透率恢复存在滞后效应。(2)渗流试验过程中,体积应变和渗透率演化具有较好的一致性。 (3)在围压加卸载过程中,高孔隙水压力条件下渗透率对应力的敏感程度和恢复程度均大于低孔隙水压力。(4)偏光显微镜图像从微观角度揭示了试样在围压加卸载过程中产生不可逆变形的内在机制:骨架颗粒相互挤压、错动导致原有微裂隙压缩、孔隙减小甚至坍塌,引起渗透率不可恢复。渗流试验后,纵波波速增大,说明岩石致密性提高,与试样内部微观结构变化具有较好的一致性。

关键词: 致密砂岩, 高围压, 高孔隙水压, 渗透率, 微观机制

Abstract: The deep rock engineering is characterised by high ground stress and high head pressure. To study the permeability evolution of rock under high confining pressure and high pore pressure conditions, the seepage tests for the variable pore pressure were conducted on tight sandstone under different confining pressure conditions. The results show that within the studied confining pressure range (0~50 MPa), the permeability presents three different variation trends with the increase of pore pressure: rapid growth phase (confining pressure at 10~20 MPa), slow growth phase (confining pressure at 30~40 MPa) and constant phase (confining pressure at 50 MPa). During the unloading process of confining pressure, irreversible deformation occurs in the sample due to high confining pressure, which results in a significant irreversible permeability and hysteresis effect on the restitution of permeability. During the seepage test, volumetric strain and the permeability evolution have a good consistency. In the loading and unloading process of confining pressure, the sensitivity and recovery capabilities of permeability to stress under high pore water pressure are stronger than those under low pore water pressure. Polarising microscope images reveal the inherent mechanism of irreversible deformation during the confining pressure loading and unloading process: the mutual extrusion and movement of skeleton particles cause the compression of the original micro-fissures, the decrease or even collapse of the pores, resulting in the irreversible permeability. After the seepage test, the P-wave velocity increases, which indicates that the compactness of the rock is improved and has a good agreement with the change of the internal microstructure.

Key words: tight sandstone, high confining pressure, high pore pressure, permeability, microscopic mechanism

中图分类号: 

  • TU 452
[1] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[2] 杨福见, 胡大伟, 田振保, 周辉, 卢景景, 罗宇杰, 桂树强, . 高静水压力压实作用下疏松砂岩渗透 特性演化及其机制[J]. 岩土力学, 2020, 41(1): 67-77.
[3] 赵波, 张广清, 唐梅荣, 庄建满, 林灿坤, . 长期注水对致密砂岩油藏岩石力学 性质影响机制研究[J]. 岩土力学, 2019, 40(9): 3344-3350.
[4] 王东星, 肖杰, 李丽华, 肖衡林, . 基于碳化-固化技术的武汉东湖淤泥 耐久性演变微观机制[J]. 岩土力学, 2019, 40(8): 3045-3053.
[5] 王辰霖, 张小东, 杜志刚, . 循环加卸载作用下预制裂隙煤样渗透性试验研究[J]. 岩土力学, 2019, 40(6): 2140-2153.
[6] 刘 健, 陈 亮, 王春萍, 马利科, 王 驹. 一种非稳态气体渗流条件下岩石渗透特性 参数计算方法及应用[J]. 岩土力学, 2019, 40(5): 1721-1730.
[7] 王东星, 肖 杰, 肖衡林, 马 强, . 武汉东湖淤泥碳化-固化试验研究[J]. 岩土力学, 2019, 40(5): 1805-1812.
[8] 李 军, 张 杨, 胡大伟, 周 辉, 卢景景, 吕 涛, 史林肯, . 花岗岩三轴循环加卸载条件下的气体渗透率[J]. 岩土力学, 2019, 40(2): 693-700.
[9] 查甫生, 刘晶晶, 许龙, 邓永锋, 杨成斌, 储诚富, . 水泥−粉煤灰固化/稳定重金属污染土的电阻率 特性试验研究[J]. 岩土力学, 2019, 40(12): 4573-4580.
[10] 东振, 申瑞臣, 薛华庆, 陈艳鹏, 陈姗姗, 孙粉锦, 张福东, 刘人和, 彭涌, . 考虑滑脱效应的低阶煤动态渗透率预测新模型[J]. 岩土力学, 2019, 40(11): 4270-4278.
[11] 荣腾龙, 周宏伟, 王路军, 任伟光, 王子辉, 苏腾, . 采掘扰动与温度耦合影响下工作面 前方煤体渗透率模型研究[J]. 岩土力学, 2019, 40(11): 4289-4298.
[12] 李玉丹,董平川,周大伟,吴子森,汪 洋,曹 耐. 页岩气藏微裂缝表观渗透率动态模型研究[J]. , 2018, 39(S1): 42-50.
[13] 王 伟,方志明,李小春, . 沁水盆地煤样静水压力下渗透率实验及模型分析[J]. , 2018, 39(S1): 251-257.
[14] 冯上鑫,柴军瑞,许增光,覃 源,陈 玺. 基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J]. , 2018, 39(8): 2886-2894.
[15] 刘 超,张东明,尚德磊,赵宏刚,宋真龙,俞 欢, . 峰后围压卸载对原煤变形和渗透特性的影响[J]. , 2018, 39(6): 2017-2024.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!