岩土力学 ›› 2019, Vol. 40 ›› Issue (9): 3662-3669.doi: 10.16285/j.rsm.2018.1055

• 数值分析 • 上一篇    下一篇

基于粒子群算法优化小波支持向量机的 岩土力学参数反演

阮永芬1,高春钦1, 2,刘克文3,贾荣谷3,丁海涛3   

  1. 1. 昆明理工大学 建筑工程学院,云南 昆明650500;2. 平高集团国际工程有限公司,河南 郑州 450018; 3. 云南建投第一勘察设计有限公司,云南 昆明650031
  • 收稿日期:2018-06-18 出版日期:2019-09-10 发布日期:2019-09-08
  • 作者简介:阮永芬,女,1964年生,博士,教授,主要从事岩土工程方面的研究及教学工作。
  • 基金资助:
    云南省重点研发计划(社会发展领域)(No.2018BC008)。

Inversion of rock and soil mechanics parameters based on particle swarm optimization wavelet support vector machine

RUAN Yong-fen1, GAO Chun-qin1, 2, LIU Ke-wen3, JIA Rong-gu3, DING Hai-tao3   

  1. 1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; 2. Pinggao Group International Engineering Co., Ltd., Zhengzhou, Henan 450018, China; 3. Yunnan Construction Investment First Investigation and Design Co., Ltd., Kunming, Yunnan 650031, China
  • Received:2018-06-18 Online:2019-09-10 Published:2019-09-08
  • Supported by:
    This work was supported by Key Research & Development Programs of the Yunnan Province (Social Development Field)(2018BC008).

摘要: 常用的确定岩土力学参数的方法有原位测试和室内试验两种,但都存在一定的局限性,参数选择的合理与否,对设计计算及数值模拟分析结果的有效性影响很大。支持向量机法在理论基础和求解算法方面都具有明显优势,为确保岩土力学参数取值的合理性,采用支持向量机法对岩土力学参数进行反演。先通过小波分析理论构造出支持向量机的核函数,再用粒子群算法(PSO)分别优化Morlet小波、Mexico小波和RBF函数的支持向量机模型参数,通过小波支持向量机模型建立反演参数与沉降值间的非线性映射关系。根据正交试验和均匀试验对需反演的岩土力学参数进行设计,结合有限元软件进行计算分析,得到学习样本和测试样本。分别采用Morlet小波、Mexico小波和RBF函数得出的预测结果和原始数据进行对比分析,发现采用Morlet小波核函数预测效果更佳。使用Morlet小波核函数预测的参数输入到Midas模型中计算建筑物最终沉降量,比较计算值与实际监测值,其相对误差不超过8.1%。研究结果表明,该方法在岩土工程参数的反演中具有良好的应用价值,对今后岩土力学参数的确定及校核提供了一种新方法。

关键词: 粒子群算法, 小波核函数, 支持向量机, 反演

Abstract: In-situ testing and laboratory testing are two common methods for determining rock and soil mechanics parameters, but there are certain limitations of both methods. The rationality of the parameter selection greatly affects the effectiveness of design calculations and numerical simulation results. The support vector machine method shows obvious advantages on the theoretical basis and solving algorithm. To guarantee the rationality of rock and soil mechanics parameters, the support vector machine method is applied to conduct invert calculations of the rock and soil mechanics parameters. Firstly, the kernel function of the support vector machine is constructed using wavelet analysis theory, and then the support vector machine model parameters of Morlet wavelet, Mexico wavelet and RBF function are optimized using particle swarm optimization(PSO). Finally, the nonlinear mapping relationship between the inversion parameters and the displacement values is established through the wavelet support vector machine model. Based on the orthogonal test and uniform test, this study designs the rock and soil mechanics parameters, which need invert calculation. Meanwhile, by combining the calculation and analysis results through finite element software, the learning samples and the test samples are obtained. After the initial data is compared with the predicted results from the calculations of the Morlet wavelet, the Mexico wavelet, and the RBF function, respectively, it is found that the prediction result of the Morlet wavelet kernel function is more reliable and effective than those of the other two methods. The relative error between the calculated value and the actual monitoring value is no more than 8.1%, when parameters predicted by the Morlet wavelet kernel function are input into the Midas model to calculate the final settlement of the building. The research results show that this method presents good application value in the inverting calculation of geotechnical engineering parameters, and provides a new idea for the determination and verification of rock and soil mechanics parameters in the future.

Key words: particle swarm optimization(PSO), wavelet kernel function, support vector machine(SVM), inversion

中图分类号: 

  • TU452
[1] 刘泉声, 王栋, 朱元广, 杨战标, 伯音, . 支持向量回归算法在地应力场反演中的应用[J]. 岩土力学, 2020, 41(S1): 319-328.
[2] 杨艳霜, 周辉, 梅松华, 张占荣, 李金兰. 高地应力硬脆性围岩开挖损伤区时效性扩展案例分析——特征与机制[J]. 岩土力学, 2020, 41(4): 1357-1365.
[3] 杨道学, 赵奎, 曾鹏, 卓毓龙, . 基于粒子群优化算法的未知波速声发射 定位数值模[J]. 岩土力学, 2019, 40(S1): 494-502.
[4] 马春辉, 杨杰, 程琳, 李婷, 李雅琦, . 基于量子遗传算法与多输出混合核相关向量机的堆石坝材料参数自适应反演研究[J]. 岩土力学, 2019, 40(6): 2397-2406.
[5] 徐 强, 肖 明, 陈俊涛, 倪少虎, . 渗流监测数据缺失处理与渗透稳定判断[J]. 岩土力学, 2019, 40(4): 1526-1534.
[6] 刘鹤, 刘泉声, 唐旭海, 罗慈友, 万文恺, 陈磊, 潘玉丛, . TBM护盾−围岩相互作用荷载识别方法[J]. 岩土力学, 2019, 40(12): 4946-4954.
[7] 许年春,吴同情,皮海洋,游 磊,吴 越,. 基于柔性承载板载荷试验的土抗剪强度参数反演研究[J]. , 2018, 39(S1): 227-234.
[8] 颜天佑,崔 臻,张勇慧,张传健,盛 谦,李建贺,. 跨活动断裂隧洞工程赋存区域地应力场分布特征研究[J]. , 2018, 39(S1): 378-386.
[9] 王庆武,巨能攀,杜玲丽,黄 健,胡 勇,. 拉林铁路桑日至加查段三维地应力场反演分析[J]. , 2018, 39(4): 1450-1462.
[10] 刘飞跃,杨天鸿,张鹏海,周靖人,邓文学,侯宪港,赵永川, . 基于声发射的岩石破裂应力场动态反演[J]. , 2018, 39(4): 1517-1524.
[11] 王洪波,张庆松,刘人太,李术才,张乐文,郑 卓,张连震. 基于压水试验的地层渗流场反分析[J]. , 2018, 39(3): 985-992.
[12] 蒙 伟,何 川,汪 波,张钧博,吴枋胤,夏舞阳. 基于侧压力系数的岩爆区初始地应力场二次反演分析[J]. , 2018, 39(11): 4191-4200.
[13] 张社荣,胡安奎,王 超,彭振辉, . 基于SLR-ANN的地应力场三维智能反演方法研究[J]. , 2017, 38(9): 2737-2745.
[14] 尹 帅,丁文龙,单钰铭,周 文,谢润成,. 基于声学数据反演定量评价致密砂岩储层微裂隙应力敏感性新方法[J]. , 2017, 38(2): 409-418.
[15] 王昌硕,王亮清,葛云峰,梁 烨,孙自豪,董曼曼,张 楠. 基于统计参数的二维节理粗糙度系数非线性确定方法[J]. , 2017, 38(2): 565-573.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!