岩土力学 ›› 2019, Vol. 40 ›› Issue (5): 1957-1965.doi: 10.16285/j.rsm.2018.1130

• 岩土工程研究 • 上一篇    下一篇

悬臂式型钢水泥土搅拌墙的水泥土 承载比和墙顶位移分析

谷淡平1, 2, 3,凌同华1, 3   

  1. 1. 长沙理工大学 土木工程学院,湖南 长沙 410114;2. 湖南工学院 建筑工程与艺术设计学院,湖南 衡阳 421002; 3. 长沙理工大学 交通基础设施安全风险管理行业重点实验室,湖南 长沙 410114
  • 收稿日期:2018-06-26 出版日期:2019-05-11 发布日期:2019-06-02
  • 通讯作者: 凌同华,男,1968年生,博士,教授,博士生导师,主要从事岩土工程方面的教学与研究工作。E-mail: lingtonghua@163.com E-mail:gudanping666@163.com
  • 作者简介:谷淡平,男,1983年生,博士研究生,主要从事岩土工程方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No. 51678071,No. 51878074);长沙理工大学交通基础设施安全风险管理行业重点实验室开放基金资助项目 (No. 16BCX09);长沙理工大学研究生科研创新项目(No. CX2017BX03);湖南省教育厅科研项目(No. 18C0923)。

Analysis of bearing ratio of cement soil and displacement at the top of wall for soil mixing wall construction method of cantilever type

GU Dan-ping1, 2, 3, LING Tong-hua1, 3   

  1. 1. School of Civil Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China; 2. College of Construction Engineering and Arts, Hunan Institute of Technology, Hengyang, Hunan 421002, China; 3. Industry Key Laboratory of Traffic Infrastructure Security Risk Management, Changsha University of Science and Technology, Changsha, Hunan 410114, China
  • Received:2018-06-26 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51678071,51878074), the Open Fund of Key Laboratory of Traffic Infrastructure Security Risk Management, Changsha University of Science & Technology (16BCX09) and the Research, Innovation Project of Graduate Students of Changsha University of Science and Technology (CX2017BX03) and the Scientific Research Project of the Education Department of Hunan Province (18C0923).

摘要: 受挡墙水泥土横向联系作用的影响,型钢水泥土搅拌墙(简称SMW工法)空间变形特性显著,由于难以量化挡墙的空间变形作用和水泥土承载能力,目前SMW工法的设计并未考虑挡墙空间变形作用和水泥土对挡墙的承载贡献。通过对悬臂式SMW工法挡墙的变形及受力进行分析,求解得到挡墙空间变形的各项应变能,根据应变能与抗力的关系,定义了空间变形效应比和水泥土的承载比,同时基于最小势能原理推求了考虑挡墙空间变形作用的墙顶位移解析解。将位移解析解与弹性支点法计算的位移值、实测位移值进行对比分析,并结合模型试验对影响SMW工法空间变形效应比和承载比的因素进行了深入讨论。结果表明:考虑空间变形作用的解析解相比弹性支点法计算结果更加接近实测值;SMW工法的挡墙高长比、水泥土的弹性模量以及墙厚对空间变形效应比和水泥土承载比有显著的影响。

关键词: 深基坑, SMW工法, 空间变形作用, 承载比, 最小势能原理

Abstract: Influenced by the lateral continuity effect of retaining wall’s cement soil, SMW (soil mixing wall) construction method displays significant spatial deformation characteristics of retaining wall. It is difficult to quantify the spatial deformation effect of retaining walls and the bearing capacity of cement soil, the function of spatial deformation effect and contribution of cement soil to retaining walls are not taken into account during the design of SMW construction method at present. By analyzing the deformation and stress of retaining wall of cantilever type SMW construction method, the strain energy of spatial deformation of retaining wall can be obtained. Ratio of spatial deformation effect and bearing ratio of cement soil of SMW construction method are defined according to the relationship between strain energy and resistance. Meanwhile, the analytic solution of displacement of the top of the wall is derived with a consideration of the spatial deformation effect of retaining wall based on the principle of minimum potential energy. The analytic solution is compared with the displacement calculated by elastic subgrade, the monitored displacement. In-depth discussion of factors influencing the spatial deformation effect ratio and the bearing ratio of cement soil is completed with a reference to the results of the model test. The results show that the analytic solution considering the spatial deformation effect is closer to the monitored values than the elastic subgrade method. The ratio of height to length of retaining wall, the elastic modulus of cement soil and the wall thickness in SMW construction method have a significant influence on the spatial deformation effect ratio and the bearing ratio of cement soil.

Key words: deep excavation, SMW (soil mixing wall) construction method, spatial deformation effect, bearing ratio, principle of minimum potential energy

中图分类号: 

  • TU 470
[1] 王成汤, 王浩, 覃卫民, 钟国强, 陈舞, . 基于多态模糊贝叶斯网络的地铁车站 深基坑坍塌可能性评价[J]. 岩土力学, 2020, 41(5): 1670-1679.
[2] 刘念武, 陈奕天, 龚晓南, 俞济涛, . 软土深开挖致地铁车站基坑及 邻近建筑变形特性研究[J]. 岩土力学, 2019, 40(4): 1515-1525.
[3] 李连祥, 刘嘉典, 李克金, 黄亨利, 季相凯, . 济南典型地层HSS参数选取及适用性研究[J]. 岩土力学, 2019, 40(10): 4021-4029.
[4] 刘素锦, 郭明伟, 李春光, . 三维边坡整体主滑方向的确定[J]. 岩土力学, 2018, 39(S2): 37-44.
[5] 周 勇,朱亚薇, . 深基坑桩锚支护结构和土体之间协同作用[J]. , 2018, 39(9): 3246-3252.
[6] 温树杰,梁 超,宋亮亮,刘 刚,. 基于最小势能法的三维临界滑裂面搜索方法[J]. , 2018, 39(7): 2708-2714.
[7] 贾金青,高军程,涂兵雄,张 磊,王海涛,高仁哲,. 深基坑中压力型预应力锚杆柔性支护结构的离心模型试验研究[J]. , 2017, 38(S2): 304-310.
[8] 曾超峰,薛秀丽,郑 刚,. 软土区基坑预降水引起支护墙侧移的典型参数影响研究[J]. , 2017, 38(11): 3295-3303.
[9] 曾超峰,薛秀丽,郑 刚,. 软土地基渗透性条件对基坑预降水过程中支护墙侧移的影响研究[J]. , 2017, 38(10): 3039-3047.
[10] 尹 松,孔令伟,杨爱武,穆 坤,. 花岗岩残积土填料路用工程特性室内试验研究[J]. , 2016, 37(S2): 287-293.
[11] 庄海洋,张艳书,薛栩超,徐 烨,. 深软场地地铁狭长深基坑变形特征实测与已有统计结果的对比分析[J]. , 2016, 37(S2): 561-570.
[12] 张 戈,毛海和. 软土地区深基坑围护结构综合刚度研究[J]. , 2016, 37(5): 1467-1474.
[13] 陈 昆,闫澍旺,孙立强,王亚雯,. 开挖卸荷状态下深基坑变形特性研究[J]. , 2016, 37(4): 1075-1082.
[14] 王建华,李江腾,廖 峻, . 土钉墙+排桩在明挖隧道深基坑支护中的几个问题[J]. , 2016, 37(4): 1109-1117.
[15] 康志军 ,谭 勇 ,李 想 ,卫 彬 ,徐长节,. 基坑围护结构最大侧移深度对周边环境的影响[J]. , 2016, 37(10): 2909-2914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!