岩土力学 ›› 2019, Vol. 40 ›› Issue (9): 3435-3446.doi: 10.16285/j.rsm.2018.1150

• 基础理论与实验研究 • 上一篇    下一篇

引红济石引水隧洞围岩力学特性研究

雷江1, 2,陈卫忠1, 3,李翻翻1, 2,于洪丹1,马永尚1, 2,谢华东4,王富刚4   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 山东大学 岩土与结构工程研究中心,山东 济南 250061;4. 兖州煤业股份有限公司 东滩煤矿,山东 邹城 273500
  • 收稿日期:2018-06-28 出版日期:2019-09-10 发布日期:2019-09-05
  • 通讯作者: 陈卫忠,男,1968年生,博士,研究员,博士生导师,主要从事隧道及地下工程方面的教学及研究工作。E-mail: wzchen@whrsm.ac.cn E-mail:leijiang14@mails.ucas.ac.cn
  • 作者简介:雷江,男,1991年生,博士研究生,主要从事隧道及地下工程方面的研究工作。
  • 基金资助:
    国家自然科学基金资助项目(No.51879258,No.51879259);中国科学院青年创新促进会资助项目。

Mechanical properties of surrounding rock in diversion tunnel of water diversion project from Hongyan River to Shitou River

LEI Jiang1, 2, CHEN Wei-zhong1, 3, LI Fan-fan1, 2, YU Hong-dan1, MA Yong-shang1, 2, XIE Hua-dong4, WANG Fu-gang4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China; 4. Dongtan Coal Mine, Yanzhou Coal Mining Company Limited, Zoucheng, Shandong 273500, China
  • Received:2018-06-28 Online:2019-09-10 Published:2019-09-05
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51879258, 51879259) and the Project of Youth Innovation Promotion Association of CAS.

摘要: 引红(红岩河)济石(石头河)引水隧洞围岩断层带破碎松软,岩石强度低,自稳能力差,易产生大变形。以上不良地质条件使其隧洞施工过程中经常会遇到TBM卡机等一系列特殊问题。针对引红济石引水隧洞施工中存在的软岩隧洞大变形问题,首先开展了X射线衍射、崩解试验,分析了试样的组成成分、黏土矿物含量对崩解性影响;再通过一系列单轴压缩试验、三轴压缩试验和蠕变试验研究了该类岩石不同应力条件下的变形破坏特征及蠕变特性。试验结果表明,该类岩石含有大量的黏土矿物(33.49%),对水比较敏感,遇水膨胀易崩解,导致岩体软化;试样具有较大塑性压缩变形,其应力?应变曲线为应变强化型,且没有明显的峰值。基于试验研究成果和现场监测数据,对该软岩隧洞大变形机制进行了分析,并提出了在围岩与管片之间安装聚氨酯缓冲层的新型支护方案,通过数值计算对支护方案的合理性进行了验证。分析结果表明:聚氨酯缓冲层可以很好地吸收围岩形变压力,避免应力集中带来的管片错台,从而大大减小管片上破坏区的产生。研究成果对该类岩体中隧洞的设计施工以及长期稳定性分析具有重要的参考作用。

关键词: 破碎软岩, 力学特性, 大变形, 蠕变试验, 支护技术

Abstract: The rock is highly fractured with low strength and poor self-stability in the diversion tunnel of water transferring project from Hongyan River to Shitou River. Due to the large deformation of the soft rock tunnel, a series of special problems such as TBM jamming occurs during tunnel construction. This paper is aimed to analyze the effects of sample composition and clay mineral content on the disintegration through X-ray diffraction and the disintegration test. In addition, the deformation and failure characteristics and creep properties of rock mass under different stress conditions are studied through a series of uniaxial compression tests, triaxial compression tests and the triaxial creep tests, respectively. The test results show that the surrounding rock is softened, because the clay minerals (33.49%) like montmorillonite and illite of the rock are sensitive to water. The sample has a large plastic compression deformation, and its stress-strain curve presents a strain-hardening type but no obvious peak intensity. The large deformation mechanism of the soft rock tunnel is analyzed, and a new support technology for installing polyurethane buffer layer between surrounding rock and lining is proposed based on the experimental studies and on-site monitoring data. The rationality of the proposed support technology is also verified through the numerical calculation. The results show that the polyurethane buffer layer can absorb the deformation pressure of the surrounding rock, and avoid the dislocation of segment caused by stress concentration, which can greatly reduce the failure zone of the lining. Research results of this study provide significant references for the tunnel design and construction as well as long-term stability analysis.

Key words: broken soft rock, mechanical properties, large deformation, creep test, support technology

中图分类号: 

  • U671
[1] 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.
[2] 蒋长宝, 魏 财, 段敏克, 陈昱霏, 余塘, 李政科, . 饱水和天然状态下页岩滞后效应及阻尼特性研究[J]. 岩土力学, 2020, 41(6): 1799-1808.
[3] 孟庆彬, 钱唯, 韩立军, 蔚立元, 王丛凯, 周星, . 极弱胶结岩体再生结构的形成机制 与力学特性试验研究[J]. 岩土力学, 2020, 41(3): 799-812.
[4] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
[5] 王立业, 周凤玺, 秦虎, . 饱和盐渍土分数阶蠕变模型及试验研究[J]. 岩土力学, 2020, 41(2): 543-551.
[6] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[7] 彭守建, 岳雨晴, 刘义鑫, 许江, . 不同成因结构面各向异性特征及其剪切力学特性[J]. 岩土力学, 2019, 40(9): 3291-3299.
[8] 王冲, 胡大伟, 任金明, 周辉, 卢景景, 刘传新, . 侵蚀性环境对地下结构渗透和力学特性影响研究[J]. 岩土力学, 2019, 40(9): 3457-3464.
[9] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[10] 蒲诃夫, 宋丁豹, 郑俊杰, 周 洋, 闫 婧, 李展毅. 饱和软土大变形非线性自重固结模型[J]. 岩土力学, 2019, 40(5): 1683-1692.
[11] 周小文, 程 力, 周 密, 王 齐, . 离心机中球形贯入仪贯入黏土特性[J]. 岩土力学, 2019, 40(5): 1713-1720.
[12] 曹 梦, 叶剑红, . 中国南海钙质砂蠕变-应力-时间四参数数学模型[J]. 岩土力学, 2019, 40(5): 1771-1777.
[13] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[14] 丛 怡, 丛 宇, 张黎明, 贾乐鑫, 王在泉, . 大理岩加、卸荷破坏过程的三维颗粒流模拟[J]. 岩土力学, 2019, 40(3): 1179-1186.
[15] 王家全, 张亮亮, 赖 毅, 陆梦梁, 叶 斌, . 加筋土挡墙静动力学特性大模型试验研究[J]. 岩土力学, 2019, 40(2): 497-505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!