岩土力学 ›› 2019, Vol. 40 ›› Issue (11): 4149-4156.doi: 10.16285/j.rsm.2018.1866

• 基础理论与实验研究 • 上一篇    下一篇

储层岩石微观孔隙结构对岩石力学特性 及裂缝扩展影响研究

李静1,孔祥超1,宋明水2,汪勇1, 3,王昊1,刘旭亮1   

  1. 1. 中国石油大学(华东)储运与建筑工程学院,山东 青岛 266580; 2. 中国石化股份有限公司胜利油田分公司,山东 东营 257000;3. 中国石化胜利油田分公司油气勘探管理中心,山东 东营 257200
  • 收稿日期:2018-10-08 出版日期:2019-11-11 发布日期:2019-11-12
  • 作者简介:李静,女,1967年生,博士,教授,博士生导师,主要从事岩石力学及油气储层裂缝方面的科研及教学工作
  • 基金资助:
    国家科技重大专项(No.2016ZX05002-002);国家自然科学基金(No.41272141)

Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation

LI Jing1, KONG Xiang-chao1, SONG Ming-shui2, WANG Yong1, 3, WANG Hao1, LIU Xu-liang1   

  1. 1. College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, Shandong 266580, China; 2. Sinopec Shengli Oilfield Company, Dongying, Shandong 257000, China; 3. Manage Center of Oil and Gas Exploration of Sinopec Shengli Oilfield Company, Dongying, Shandong 257200, China
  • Received:2018-10-08 Online:2019-11-11 Published:2019-11-12
  • Supported by:
    This work was supported by the National Science and Technology Major Project (2016ZX05002-002) and the National Natural Science Foundation of China (51779031).

摘要: 储层岩石是一种具有复杂孔隙结构的天然非均质材料,微观结构影响岩石的宏观力学特性和破裂特性,认识储层岩石微观孔隙结构及其对岩石力学特性的影响对油气开采和储层改造具有重要意义。为此,利用CT扫描试验和数字图像处理技术,定量表征储层岩石微观孔隙结构;据此建立微观孔隙结构的三维模型,根据单轴压缩试验获取模型的细观参数,并在PFC3D中进行单轴压缩模拟,分析微观孔隙结构对岩石力学特性和裂缝扩展的影响。结果表明,储层岩石微观孔隙结构概率分布满足对数正态分布,几何形状复杂,孔隙分布具有分形特征;微观孔隙的存在造成单轴抗压强度的降低,分形维数越大,单轴抗压强度越小,两者呈近似线性关系;孔隙结构对裂缝起裂位置、扩展及贯通方向具有决定性作用,裂缝起裂位置多出现在孔隙尖端处;在平行于加载方向的平面内,裂缝多沿孔隙尖端近30°方向和平行于加载方向扩展;在垂直于加载方向的平面内,裂缝沿裂隙轴线方向延伸或使孔洞直径增大;加载过程中裂缝易造成孔隙之间的贯通。

关键词: CT扫描, 微观孔隙结构, 离散元, 岩石力学特性, 裂缝扩展

Abstract: Reservoir rock is a type of heterogeneous material, which has pore structure with complex geometry, and microstructure affects the macro-mechanical properties and fracture characteristics of rocks. Therefore, understanding of reservoir rock micro-pore structure and its influence on rock mechanics is of great significance to oil and gas exploitation and reservoir transformation. For this reason, micro-pore structure of tight sandstone is quantitatively characterized by CT scanning experiment and digital image processing technology, and a discrete element model with pore structure is established. The micro-parameters of the model are calibrated by uniaxial compression experiment. The influence of pore structure on rock mechanical properties and crack propagation is analyzed by uniaxial compression simulation in PFC3D. The results show that the probability distribution of micro-pore structure of tight sandstone satisfies the lognormal distribution. The geometry and distribution of micro-pore structure are complex and have fractal features. Existence of micro-pore structure results in decrease of uniaxial compressive strength. The larger the fractal dimension is, the smaller the uniaxial compressive strength is, and the relationship is approximately linear. The micro-pore structure plays a decisive role in crack initiation position, propagation and penetration direction. Cracks initially appear at the tip of the pores. In the plane parallel to the loading direction, the cracks propagate along the 30° direction of the tip of the pore and parallel to the loading direction. In the plane perpendicular to the loading direction, the crack in the XY plane extends along the axis of the fracture or causes the hole diameter to increase. Cracks are likely to cause penetration between pores during loading.

Key words: CT scanning, micro-pore structure, discrete element, rock mechanical properties, crack propagation

中图分类号: 

  • TU 452
[1] 薛亚东, 周杰, 赵丰, 李兴. 基于MatDEM的TBM滚刀破岩机理研究[J]. 岩土力学, 2020, 41(S1): 337-346.
[2] 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(S1): 347-354.
[3] 侯志强, 王宇, 刘冬桥, 李长洪, 刘昊. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(5): 1510-1520.
[4] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
[5] 吴祁新, 杨仲轩. 基于应变响应包络的颗粒材料增量力学行为研究[J]. 岩土力学, 2020, 41(3): 915-922.
[6] 彭家奕, 张家发, 沈振中, 叶加兵, . 颗粒形状对粗粒土孔隙特征和渗透性的影响[J]. 岩土力学, 2020, 41(2): 592-600.
[7] 孙博, 杨怀德, 谷玲, 刘跃, 唐碧华, 赵桂连, 张连明. 基于UDEC颗粒模型的不确定性分析[J]. 岩土力学, 2019, 40(9): 3679-3688.
[8] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[9] 王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的 离散元分析[J]. 岩土力学, 2019, 40(6): 2416-2426.
[10] 张 帆, 马 耕, 冯 丹, . 大尺寸真三轴煤岩水力压裂模拟试验 与裂缝扩展分析[J]. 岩土力学, 2019, 40(5): 1890-1897.
[11] 陈 峥, 何 平, 颜杜民, 高红杰, . 考虑土拱效应的管棚合理间距计算方法[J]. 岩土力学, 2019, 40(5): 1993-2000.
[12] 赵兰浩, 芮开天, 刘勋楠. 非均匀颗粒快速线性接触检测算法[J]. 岩土力学, 2019, 40(3): 1187-1196.
[13] 顾晓强, 杨朔成, . 基于离散元数值方法的砂土小应变弹性特性探讨[J]. 岩土力学, 2019, 40(2): 785-791.
[14] 蔡正银, 朱 洵, 黄英豪, 张 晨. 冻融过程对膨胀土裂隙演化特征的影响[J]. 岩土力学, 2019, 40(12): 4555-4563.
[15] 梁维云, 韦昌富, 颜荣涛, 杨德欢. NaCl溶液饱和膨胀土的压缩特性及其微观机制[J]. 岩土力学, 2019, 40(12): 4759-4766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!