岩土力学 ›› 2019, Vol. 40 ›› Issue (S1): 494-502.doi: 10.16285/j.rsm.2018.2026

• 数值分析 • 上一篇    下一篇

基于粒子群优化算法的未知波速声发射 定位数值模

杨道学1, 2,赵奎1, 2,曾鹏1, 2,卓毓龙1, 2   

  1. 1. 江西理工大学 资源与环境工程学院,江西 赣州 341000; 2. 江西理工大学 江西省矿业工程重点实验室,江西 赣州 341000
  • 收稿日期:2018-11-02 出版日期:2019-08-01 发布日期:2019-08-18
  • 通讯作者: 赵奎,男,1969年生,博士,教授,博士生导师,主要从事岩石力学与工程研究工作。E-mail: 296931654@qq.com E-mail: daoxuey@126.com
  • 作者简介:杨道学,男,1990年生,博士研究生,主要从事岩石力学与工程研究工作。
  • 基金资助:
    国家自然科学基金项目(No.51664018,No.51364012);江西省优势科技创新团队项目(No.20165BCB19012);江西理工大学优秀博士论文培育项目(No.3105500025)

Numerical simulation of unknown wave velocity acoustic emission localization based on particle swarm optimization algorithm

YANG Dao-xue1, 2, ZHAO Kui1, 2, ZENG Peng1, 2, ZHUO Yu-long1, 2   

  1. 1. School of Resources And Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou,Jiangxi 341000, China; 2. Jiangxi Provincial Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • Received:2018-11-02 Online:2019-08-01 Published:2019-08-18
  • Supported by:
    This work was supported by the Technology Project Funding Support Plan(51664018, 51364012), the Jiangxi Advantage Technology Innovation Team Project(20165BCB19012), and Jiangxi University of Science and Technology Excellent Doctoral Thesis Cultivation Project(3105500025).

摘要: 针对岩石力学试验中基于时差定位算法中声发射定位精度受岩石波速等诸多因素的影响问题,提出基于粒子群优化的未知波速声发射定位算法。该算法将岩石波速作为未知值,根据拾取到的时差建立基于最小二乘法原理的目标函数,利用粒子群优化算法,求解目标函数,寻得目标位置和波速。权重系数是影响该算法精度及其稳定性的重要因素,首先通过数值试验模型确定最优权重系数为0.729 8,可以满足算法精度及其稳定性。数值仿真结果表明,由选取的权重系数最后计算精度高于传统已知波速算法。为验证该算法的实际应用效果,进行断铅试验,结果表明该算法优于传统已知波速算法。

关键词: 声发射定位, 未知波速, 粒子群算法, 权重系数

Abstract: To solve the problem that the positioning accuracy of the acoustic emission time difference localization algorithm is affected by many factors such as rock wave velocity in rock mechanics test, an unknown wave velocity acoustic emission localization algorithm based on particle swarm optimization is developed in this paper. The algorithm takes the rock wave velocity as an unknown value, establishing the objective function based on the least squares principle according to the picked time difference, applying the particle swarm optimization algorithm to solve the objective function and find the target position and wave velocity. The weight coefficient is an important factor affecting the accuracy and stability of the algorithm. Firstly, the optimal weight coefficient 0.729 8 is determined by numerical model, which can satisfy the accuracy and stability requirements of the algorithm. The numerical simulation results show that the calculation accuracy based on the selected weight coefficient is higher than the traditional wave velocity algorithm. In order to verify the algorithm in practical application, the lead-breaking test is carried out. It is proved that the algorithm is superior to the traditional wave velocity algorithm.

Key words: acoustic emission localization, unknown wave velocity, particle swarm optimization, weight coefficient

中图分类号: 

  • TE 351
[1] 阮永芬, 高春钦, 刘克文, 贾荣谷, 丁海涛, . 基于粒子群算法优化小波支持向量机的 岩土力学参数反演[J]. 岩土力学, 2019, 40(9): 3662-3669.
[2] 王洪波,张庆松,刘人太,李术才,张乐文,郑 卓,张连震. 基于压水试验的地层渗流场反分析[J]. , 2018, 39(3): 985-992.
[3] 胡 军,董建华 ,王凯凯 ,黄贵臣,. 边坡稳定性的CPSO-BP模型研究[J]. , 2016, 37(S1): 577-582.
[4] 郭庆彪 ,郭广礼 ,吕 鑫 ,陈 涛 ,王金涛,. 山区谷底沉陷预测模型及其参数反演[J]. , 2016, 37(5): 1351-1356.
[5] 宋盛渊,王 清,陈剑平,李严严,史明远. 岩体结构面的多参数优势分组方法研究[J]. , 2015, 36(7): 2041-2048.
[6] 张 研 ,苏国韶 ,燕柳斌 . 隧洞围岩损失位移估计的智能优化反分析[J]. , 2013, 34(5): 1383-1390.
[7] 陈昌富,唐仁华,梁冠亭. 基于混合粒子群算法和能量法主动土压力计算[J]. , 2012, 33(6): 1845-1850.
[8] 孙立川 ,张海平 ,周念清. 随机-模糊统计方法在岩土特征参数指标统计中的应用[J]. , 2012, 33(3): 821-826.
[9] 贾善坡 ,伍国军 ,陈卫忠. 基于粒子群算法与混合罚函数法的有限元优化反演模型及应用[J]. , 2011, 32(S2): 598-603.
[10] 孙 强 ,薛 雷 ,王媛媛. 克里金参数估值法及其在参数估计分析中的应用[J]. , 2009, 30(S2): 371-373.
[11] 邬 凯,盛 谦,梅松华,李 佳. PSO-LSSVM模型在位移反分析中的应用[J]. , 2009, 30(4): 1109-1114.
[12] 马文涛. 基于PSO和LSSVM的边坡稳定性评价方法[J]. , 2009, 30(3): 845-848.
[13] 李 亮 ,迟世春 ,郑榕明 . 基于椭球滑动体假定和三维简化 JANBU法的边坡稳定分析[J]. , 2008, 29(9): 2439-2445.
[14] 罗润林,阮怀宁,朱珍德,朱昌星. 锦屏二级水电站岩石夹层非定常参数剪切蠕变模型及参数识别研究[J]. , 2006, 27(S2): 239-243.
[15] 闫 滨 ,高真伟,. 基于PSONN的大坝监控实时预报模型[J]. , 2006, 27(S2): 548-552.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!