岩土力学 ›› 2019, Vol. 40 ›› Issue (9): 3465-3475.doi: 10.16285/j.rsm.2018.2306

• 基础理论与实验研究 • 上一篇    下一篇

膨胀土卸荷蠕变特性及其非线性蠕变模型

李晶晶1, 2, 3,孔令伟2, 3   

  1. 1. 湖北理工学院 土木建筑工程学院,湖北 黄石 435003;2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室, 湖北 武汉 430071;3. 中国科学院大学,北京 100049
  • 收稿日期:2018-12-24 出版日期:2019-09-10 发布日期:2019-09-05
  • 通讯作者: 孔令伟,男,1967年生,博士,研究员,博士生导师,主要从事特殊土的力学特性与灾害防治技术研究。E-mail:lwkong@whrsm.ac.cn E-mail:smilinglee@hotmail.com
  • 作者简介:李晶晶,女,1989年生,博士,讲师,主要从事特殊土的力学特性与边坡工程方面的研究与教学工作。
  • 基金资助:
    国家自然科学基金重点项目(No.41430634);湖北省高等学校优秀中青年科技创新团队计划项目(No.T201823);湖北理工学院校级引进人才项目(No.18xjz07R)。

Creep properties of expansive soil under unloading stress and its nonlinear constitutive model

LI Jing-jing1, 2, 3, KONG Ling-wei2, 3   

  1. 1. School of Civil Engineering and Architecture, Hubei Polytechnic University, Huangshi, Hubei 435003, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. University of Chinese Academy of Sciences, Beijing, 100049, China
  • Received:2018-12-24 Online:2019-09-10 Published:2019-09-05
  • Supported by:
    This work was supported by the Key Program of National Nature Science Foundation of China (41430634); the Program for Excellent Young and Middle-aged Science and Technology Innovation Team of Higher Education Institutions of Hubei Province of China (T201823) and the Talent Introduction Program of Hubei Polytechnic University (18xjz07R).

摘要: 鉴于膨胀土滑坡往往表现为长期性、渐进性等与时间相关的特性,利用GDS应力路径三轴仪对膨胀土进行了三轴卸荷蠕变试验。试验结果表明:当偏应力较小时,膨胀土的蠕变曲线仅出现瞬时变形和衰减蠕变;当偏应力达到一定值时,其蠕变曲线也呈现衰减蠕变、稳态蠕变和加速蠕变3个阶段,但其加速蠕变阶段的特征与一般岩土体不同,其蠕变速度近乎常数。膨胀土的应力?应变等时曲线显示,膨胀土卸荷蠕变具有非线性特征,且其非线性程度与蠕变时间和应力水平相关,蠕变时间越长、应力水平越高,其非线性程度越高。基于非线性流变力学理论,提出了一种非线性四元件蠕变模型,将标准线性体与一个非线性黏壶串联,该模型可描述等围压三轴压缩应力状态下膨胀土轴向应变随时间的演变规律。根据膨胀土卸荷蠕变试验结果,采用曲线拟合法对三维非线性模型的参数进行反演识别。拟合曲线和试验曲线对比显示,两者吻合良好,说明该模型可以很好地描述膨胀土的蠕变特性。此外,基于该蠕变模型获取了膨胀土的临界破坏应力,其与常规剪切破坏应力的比值随着固结压力的减小而减小,表明越接近坡面的土层越容易发生蠕变破坏。

关键词: 膨胀土, 卸荷, 蠕变, 非线性, 蠕变模型

Abstract: Since the slide of expansive soil slope is generally characterised by time-dependent properties such as chronicity and gradualness, triaxial unloading creep tests are carried out on the expansive soil specimens by GDS stress path triaxial apparatus. The test results show that the creep curve of expansive soil only shows transient deformation and attenuation creep with low deviatoric stress. When the deviatoric stress reaches a certain value, the creep curve also exhibits attenuation creep, steady creep and accelerated creep, and the velocity in the accelerated stage is nearly constant, different from common soil. Meanwhile, isochronous stress-strain curve of expansive soil indicats that its creep process has nonlinear characteristics, and the nonlinear degree is related to creep time and stress level. When the creep time is longer and the stress level is higher, the degree of nonlinearity is higher. Based on the nonlinear rheological theory, a new nonlinear four-element creep model is presented, in which the standard linear body is connected in series with a nonlinear clay pot. The proposed model can describe the evolution of the axial strain of expansive soil with time under constant confining pressure and triaxial compression stress. According to triaxial compression creep test results of expansive soil, the parameters of the proposed model are inversed by using curve fitting method.The theoretical curves accord well with the test curves, which indicate that the proposed model can describe the creep property of expansive soil. Furthermore, critical failure stress can be obtained based on the creep model. As the confining stress decreases, the ratio of the critical failure stress to conventional shear failure stress decreases, which indicates that creep likely happens on the expansive soil layer closer to slope surface.

Key words: expansive soil, unloading, creep, nonlinearity, creep model

中图分类号: 

  • TU 411
[1] 徐日庆, 程康, 应宏伟, 林存刚, 梁荣柱, 冯苏阳, . 考虑埋深与剪切效应的基坑卸荷下卧 隧道的形变响应[J]. 岩土力学, 2020, 41(S1): 195-207.
[2] 卞康, 陈彦安, 刘建, 崔德山, 李一冉, 梁文迪, 韩啸. 不同吸水时间下页岩卸荷破坏特征的 颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367.
[3] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[4] 骆赵刚, 汪时机, 杨振北, . 膨胀土湿干胀缩裂隙演化及其定量分析[J]. 岩土力学, 2020, 41(7): 2313-2323.
[5] 童星, 袁静, 姜叶翔, 刘兴旺, 李瑛, . 基于Mindlin解的基坑分层卸荷附加应力计算 及回弹变形的多因素影响分析[J]. 岩土力学, 2020, 41(7): 2432-2440.
[6] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[7] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[8] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[9] 庄心善, 赵汉文, 王俊翔, 黄勇杰, 胡智. 循环荷载下重塑弱膨胀土滞回曲线 形态特征定量研究[J]. 岩土力学, 2020, 41(6): 1845-1854.
[10] 喻昭晟, 陈晓斌, 张家生, 董亮, ABDOULKADER M S. 粗颗粒土的静止土压力系数非线性分析与计算方法[J]. 岩土力学, 2020, 41(6): 1923-1932.
[11] 李佳龙, 李钢, 于龙. 隔离非线性平面应变单元模型及其 在Drucker-Prager模型中的应用[J]. 岩土力学, 2020, 41(5): 1492-1501.
[12] 赵军, 郭广涛, 徐鼎平, 黄翔, 胡偲, 夏跃林, 张頔. 三轴及循环加卸载应力路径下深埋 硬岩变形破坏特征试验研究[J]. 岩土力学, 2020, 41(5): 1521-1530.
[13] 江留慧, 李传勋, 杨怡青, 张锐. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590.
[14] 陈琼, 崔德山, 王菁莪, 刘清秉. 不同固结状态下黄土坡滑坡滑 带土的蠕变试验研究[J]. 岩土力学, 2020, 41(5): 1635-1642.
[15] 徐毅青, 邓绍玉, 葛琦. 锚索预应力初期与长期损失的预测模型研究[J]. 岩土力学, 2020, 41(5): 1663-1669.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!