岩土力学 ›› 2019, Vol. 40 ›› Issue (S1): 143-151.doi: 10.16285/j.rsm.2018.2364

• 基础理论与实验研究 • 上一篇    下一篇

长期浸泡作用下灌浆加固裂隙岩体劣化效应

肖瑶,邓华锋,李建林,支永艳,熊雨   

  1. 三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002
  • 收稿日期:2018-12-29 出版日期:2019-08-01 发布日期:2019-08-15
  • 通讯作者: 邓华锋,男,1979年生,博士,教授,博士生导师,主要从事岩石力学相关的教学与科研工作。E-mail: dhf8010@ctgu.edu.cn E-mail:aimme0515@163.com
  • 作者简介:肖瑶,女,1992年生,博士研究生,主要从事岩石力学相关的研究工作
  • 基金资助:
    国家自然科学重点项目(No.51439003);国家自然科学基金项目(No.51679127);三峡库区地质灾害教育部重点实验室(三峡大学)开放研究基金项目(No.2018KDZ04)。

The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion

XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu   

  1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, Hubei 443000, China
  • Received:2018-12-29 Online:2019-08-01 Published:2019-08-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51439003, 51679127), Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University), and the Ministry of Education Open Fund Project(2018KDZ04).

摘要: 为分析灌浆加固裂隙岩体在压力水长期浸泡作用下力学性能的劣化效应,在前期碳纤维水泥基复合灌浆材料加固裂隙岩体研究基础上开展了考虑水压力影响的灌浆加固裂隙岩体长期浸泡试验和在不同浸泡周进行直剪试验。研究结果表明,(1) 压力水长期浸泡作用下灌浆加固裂隙岩样的剪应力?剪切位移曲线形态变化趋势明显,剪切刚度逐渐减小,达到峰值抗剪强度时的剪切位移逐渐增大;(2) 随着浸泡周期增加,灌浆加固裂隙岩体的抗剪强度呈先陡后缓的劣化趋势,6个浸泡周期(150 d)后不同法向应力下峰值抗剪强度的劣化幅度为32.6%~39.9%,对应内摩擦角和黏聚力分别降低了19.3%、39.4%,其中前4个浸泡周期(0~90 d)抗剪强度参数劣化幅度占总劣化幅度的90%左右;(3) 水压力作用下裂隙岩样发生溶解、溶蚀、润滑、软化等物理化学作用,浆体中的凝胶体被进入浆体内部的水分子软化,导致裂隙岩体和灌浆体本身的力学性质逐渐劣化,浆体与裂隙面之间的胶结作用、浆体与碳纤维之间粘结性能逐渐减弱,使得灌浆加固裂隙岩体抗剪性能逐渐劣化,剪切破坏面逐渐发展到浆体与裂隙面之间的胶结面。相关研究成果可为灌浆加固裂隙岩体的长期稳定性分析评价提供参考。

关键词: 灌浆加固, 裂隙岩体, 碳纤维, 水压力, 长期浸泡, 劣化效应

Abstract: In order to analyze the deterioration effect of mechanical properties of the fractured rocks strengthened by grouting in a long-term immersion in pressurized water, the long-term immersion tests of reinforced fractured rock samples considering the influence of water pressure. These tests are based on the earlier research of strengthening the fractured rock mass using carbon fiber reinforced cement-based composites mixed with grouting materials. Besides, the shear tests were also carried out in different immersion periods. The results show that: (1) a significant change trend of the shear stress-shear displacement occurs for the fractured rock samples reinforced by grouting and immersed in the pressure water in the long-term, with the shear stiffness gradually decreases, and the shear displacement gradually increases when the shear strength reaches to its peak. (2) With the longer immersion period, shear strength of reinforced fractured rock mass shows a sharp degradation trend at first, and then a gentle degradation. After 6 cycles of soak periods (i.e. 150 days), the degradation rate of the maximum shear strength under different normal stresses is in the range of 32.6%-39.9%. It means that the internal friction angle and cohesion is reduced by 19.3% and 39.4%, respectively. The shear strength parameters in the first four soaking periods (0-90 d) account for about 90% of the total deterioration range. (3) Dissolution, corrosion, lubrication, softening of the fractured rocks occurs in the pressurized water. Besides, the gel in the slurry is softened by the water molecules entering into the interior of the slurry, which result in a gradually deterioration in mechanical properties of fractured rocks and grouting. Meanwhile, cementation between the slurry and fracture surface, and bond performance between the slurry and carbon fiber are gradually weakened. As a result, shear performance of grouting reinforced fractured rocks gradually deteriorates, and shear failure surface gradually developed to cementation surface between the slurry and fracture surface. The experimental results in this paper can provide reference for the long-term evaluation on stability analysis of fractured rock mass reinforced by grouting method.

Key words: grouting reinforcement, fractured rock mass, carbon fiber, water pressure, long-term immersion, degradation effect

中图分类号: 

  • TU452
[1] 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260.
[2] 白雪元, 王学滨, 舒芹, . 静水压力下内摩擦角对圆形洞室围岩局部破裂 影响的连续-非连续模拟[J]. 岩土力学, 2020, 41(7): 2485-2493.
[3] 张升, 高峰, 陈琪磊, 盛岱超, . 砂-粉土混合料在列车荷载作用下 细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598.
[4] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[5] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[6] 杨福见, 胡大伟, 田振保, 周辉, 卢景景, 罗宇杰, 桂树强, . 高静水压力压实作用下疏松砂岩渗透 特性演化及其机制[J]. 岩土力学, 2020, 41(1): 67-77.
[7] 于丽, 吕城, 段儒禹, 王明年, . 考虑孔隙水压力及非线性Mohr-Coulomb破坏准则下浅埋土质隧道三维塌落机制的上限分析[J]. 岩土力学, 2020, 41(1): 194-204.
[8] 支永艳, 邓华锋, 肖瑶, 段玲玲, 蔡佳, 李建林. 微生物灌浆加固裂隙岩体的渗流特性分析[J]. 岩土力学, 2019, 40(S1): 237-244.
[9] 张治国, 黄茂松, 杨 轩, . 基于衬砌长期渗漏水影响的隧道施工扰动 诱发超孔隙水压消散及地层固结沉降解[J]. 岩土力学, 2019, 40(8): 3135-3144.
[10] 贺桂成, 廖家海, 李丰雄, 王 昭, 章求才, 张志军. 水饱和边坡夹层热-孔隙水-力耦合作用模型及应用[J]. 岩土力学, 2019, 40(5): 1663-1672.
[11] 李 崴, 王者超, 毕丽平, 刘 杰, . 辐射流条件下裂隙岩体渗透性表征单元体尺寸 与等效渗透系数[J]. 岩土力学, 2019, 40(2): 720-727.
[12] 汪华斌, 李建梅, 金怡轩, 周 博, 周 宇, . 降雨诱发边坡破坏数值模拟两个关键问题 的解决方法[J]. 岩土力学, 2019, 40(2): 777-784.
[13] 丁瑜, 陈晓斌, 张家生, 贾羽, . 风化红砂岩残积土路基瞬态饱和区动态水压力 特征试验研究[J]. 岩土力学, 2019, 40(12): 4740-4750.
[14] 黄朝煊. 塑料排水板处理地基非线性固结计算研究[J]. 岩土力学, 2019, 40(12): 4819-4827.
[15] 尹晓萌, 晏鄂川, 刘旭耀, 李兴明, . 土体稳定性计算中地下水作用力探讨[J]. 岩土力学, 2019, 40(1): 156-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!