岩土力学 ›› 2020, Vol. 41 ›› Issue (4): 1134-1145.doi: 10.16285/j.rsm.2019.0136

• 基础理论与实验研究 • 上一篇    下一篇

地下商场结构对地面运动影响的振动台试验研究

潘旦光1, 2,程业1,陈清军2   

  1. 1. 北京科技大学 土木工程系,北京 100083;2. 同济大学 土木工程防灾国家重点试验室,上海 200092
  • 收稿日期:2019-01-21 修回日期:2019-06-29 出版日期:2020-04-11 发布日期:2020-07-01
  • 通讯作者: 程业,男,1995年生,博士研究生,主要从事防灾减灾及防护工程方面的研究。E-mail: chengye_1995@126.com E-mail:pdg@ustb.edu.cn
  • 作者简介:潘旦光,男,1974年生,博士,研究员,博士生导师,主要从事防灾减灾方面的研究。
  • 基金资助:
    土木工程防灾国家重点试验室开放基金(No. SLDRCE15-01)。

Shaking table test of the effect of underground shopping mall structure on ground motion

PAN Dan-guang1, 2, CHENG Ye1, CHEN Qing-jun2   

  1. 1. Department of Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2019-01-21 Revised:2019-06-29 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This study was supported by the Open Foundation of State Key Laboratory for Disaster Reduction in Civil Engineering (SLDRCE15-01).

摘要: 为了研究地下空间结构对场地地震反应的影响,以一个三层地下商场结构为原型,设计并开展了土?地下空间结构动力相互作用振动台模型试验,研究了在6条不同卓越频率输入地震波在不同峰值加速度下场地地震反应的变化规律。试验研究结果表明:(1)地表水平加速度放大系数以结构中轴线为对称轴呈对称分布,地下结构显著影响上方及邻近场地的地表水平加速度。同时,由于地下空间结构的局部场地效应影响,即使在水平地震输入下也将导致场地产生竖向振动,地表竖直加速度放大系数呈M形分布。地下空间结构的影响范围可达到其两侧各一倍宽度距离。(2)地表加速度放大系数受输入地震波卓越频率的影响明显,且随着输入地震波的峰值加速度(PGA)的增大而降低,但空间放大系数随着PGA的增大而增大。(3)地表加速度Fourier谱的峰值频率受输入地震波的卓越频率、场地水平方向的固有频率和竖向固有频率的综合影响。

关键词: 振动台试验, 地下结构, 土?结构相互作用, 地面运动, 地震反应

Abstract: To study the influence of underground space structure on ground motion, a shaking table test of soil-underground structure dynamic interaction was designed and carried out with a three-story underground shopping mall structure as a prototype. Six seismic waves with different predominant frequencies and peak accelerations were regarded as input waves to test ground motion. The experimental results show that the amplification factor of horizontal acceleration of ground surface is symmetrically distributed along the axis of the underground structure. The underground structure significantly affects the horizontal acceleration of the ground surface above and adjacent to the sites. At the same time, due to the local site effect of underground space structure, vertical vibration will occur even under horizontal seismic excitations. The amplification factor of vertical acceleration of ground surface is distributed as M-shaped. The influence range of underground space structure can reach a distance equal to its own width on both sides. The amplification factor of acceleration of ground surface is obviously affected by the predominant frequency of input seismic wave, and decreases with the increase of peak ground acceleration (PGA), but the space amplification factor increases with the increase of PGA. The peak frequency of ground acceleration Fourier spectrum is influenced by the predominant frequency of seismic waves, natural frequencies in horizontal and vertical directions of soil site.

Key words: shaking table test, underground structure, soil-structure interaction, ground motion, seismic response

中图分类号: 

  • TU 435
[1] 赖天文, 雷浩, 武志信, 吴红刚, . 玄武岩纤维增强复合材料在高边坡防护中的 振动台试验研究[J]. 岩土力学, 2021, 42(2): 390-400.
[2] 韩润波, 许成顺, 杜修力, 许紫刚, . 土-地下结构体系拟静力推覆试验 模型箱类型的优选[J]. 岩土力学, 2021, 42(2): 462-470.
[3] 徐超, 罗敏敏, 任非凡, 沈盼盼, 杨子凡. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186.
[4] 李福秀, 吴志坚, 严武建, 赵多银, . 基于振动台试验的黄土塬边斜坡 动力响应特性研究[J]. 岩土力学, 2020, 41(9): 2880-2890.
[5] 陈国兴, 李磊, 丁杰发, 赵凯, . 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056-3065.
[6] 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 基于自由场大型振动台试验的饱和砂土 固-液相变特征研究[J]. 岩土力学, 2020, 41(7): 2189-2198.
[7] 杨长卫, 童心豪, 王栋, 谭信荣, 郭雪岩, 曹礼聪, . 地震作用下有砟轨道路基动力响应 规律振动台试验[J]. 岩土力学, 2020, 41(7): 2215-2223.
[8] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[9] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[10] 禹海涛, 张正伟, 李 攀, . 地下结构抗震设计的改进等效反应加速度法[J]. 岩土力学, 2020, 41(7): 2401-2410.
[11] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[12] 韩俊艳, 李满君, 钟紫蓝, 许敬叔, 李立云, 兰景岩, 杜修力. 基于埋地管道非一致激励振动台 试验的土层地震响应研究[J]. 岩土力学, 2020, 41(5): 1653-1662.
[13] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[14] 李平, 张宇东, 薄涛, 辜俊儒, 朱胜. 基于离心机振动台试验的梯形河谷场地 地震动效应研究[J]. 岩土力学, 2020, 41(4): 1270-1278.
[15] 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[5] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[6] 陈中学,汪 稔,胡明鉴,魏厚振,王新志. 云南东川蒋家沟泥石流形成内因初探[J]. , 2009, 30(10): 3053 -3056 .
[7] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[8] 赵明华,刘小平,黄立葵. 降雨作用下路基裂隙渗流分析[J]. , 2009, 30(10): 3122 -3126 .
[9] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[10] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .