岩土力学 ›› 2019, Vol. 40 ›› Issue (10): 4041-4048.doi: 10.16285/j.rsm.2019.0243

• 岩土工程研究 • 上一篇    下一篇

季节冻土区高速铁路防冻胀路基保温强化特性研究

宋宏芳1,岳祖润2,李佰林1,张 松1, 3, 4   

  1. 1. 石家庄铁道大学 土木工程学院,河北 石家庄 050043;2. 石家庄铁道大学 研究生学院,河北 石家庄 050043;3. 石家庄铁道大学 道路与铁道工程安全保障省部共建教育部重点实验室,河北 石家庄 050043;4. 北京中煤矿山工程有限公司,北京 100013
  • 收稿日期:2019-01-28 出版日期:2019-10-11 发布日期:2019-10-20
  • 通讯作者: 岳祖润,男,1962年生,博士,教授,主要从事铁道工程方面的研究。E-mail: yzr1898@qq.com E-mail:songhongfang0605@163.com
  • 作者简介:宋宏芳,女,1987年生,博士研究生,主要从事冻土路基方面的研究。
  • 基金资助:
    中国铁路总公司科技研究开发计划项目(No. 2017G002-W,No. 2017G008-A);河北省在读研究生创新能力培养资助项目(No.CXZZBS2018149);道路与铁道工程安全保障省部共建教育部重点实验室(石家庄铁道大学)开放课题(No. STKF201719)。

Thermal insulation and strengthening properties of anti-frost heaving subgrade structure of the high-speed railway in seasonally frozen soil region

SONG Hong-fang1, YUE Zu-run2, LI Bai-lin1, ZHANG Song1, 3, 4   

  1. 1. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 2. School of Graduate, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. Key Laboratory of Roads and Railway Engineering Safe Control of Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 4. Beijing China Coal Mine Engineering Co., Ltd., Beijing 100013, China
  • Received:2019-01-28 Online:2019-10-11 Published:2019-10-20
  • Supported by:
    This work was supported by the Technology Research and Development of China Railway Corporation (2017G002-W, 2017G008-A), the Funded Project for Innovative Graduates in Hebei Province of China (CXZZBS2018149) and the Open Project for Key Laboratory of Roads and Railway Engineering Safe Control (Shijiazhuang Tiedao University), Ministry of Education (STKF201719).

摘要: 季节冻土区路基的冻胀变形影响高速列车的运行速度、行车安全。以普通级配碎石路基结构为原型,建立轨下基础热-力耦合模型和路基结构外力作用模型,通过温度场和变形场的现场监测数据、力学特性计算的文献资料验证了模型的可靠性。在此基础上建立水泥稳定碎石路基、保温强化层+级配碎石路基、保温强化层+水泥稳定碎石路基3种防冻胀路基模型,计算冻胀变形和受力特性。结果表明:保温强化层和水泥稳定碎石填料均有效减小了路基的冻胀变形,其中保温强化层+水泥稳定碎石路基的冻结深度和最大冻胀量最小,分别为0.8 m、1.585 mm;保温强化层可减小基床表层竖向应力,且弹性模量较大的水泥稳定碎石可加速竖向应力的衰减,使得基床底层承受应力减小。保温强化层+水泥稳定碎石基床表层结构可为季节冻土区高速铁路路基结构的选型提供参考。

关键词: 路基, 季节冻土区, 高速铁路, 防冻胀结构, 冻胀变形, 层间力学特性

Abstract: Frost heaving deformation of the subgrade in the seasonally frozen region affects the running speed and safety of high-speed trains. Taking ordinary-graded macadam subgrade structure as the prototype, we established the thermal-mechanical coupling model of subgrade foundation and the external force model of subgrade whole structure. Then the temperature field, deformation field and structural mechanical parameters were calculated and compared with literature data, which further verified the reliability of the model. On this basis, three anti-frost heave structural models were established, including the cement stabilized gravel subgrade, thermal insulation strengthening layer with graded macadam subgrade, and thermal insulation strengthening layer with cement stabilized macadam subgrade. Finally, the frost heave deformation and stress characteristics were calculated. The results show that the thermal insulation strengthening layer and cement stabilized macadam filler can effectively reduce the frost heaving deformation of the subgrade. The frost depth and maximum frost heaving of the thermal insulation strengthening layer with cement stabilized macadam structure are the smallest, which are 0.8 m and 1.585 mm. Moreover, the thermal insulation strengthening layer can reduce the vertical stress of the surface layer of the subgrade, and the cement stabilized macadam with larger elastic modulus can accelerate the attenuation of vertical stress and reduce the stress of bottom layer of subgrade. The thermal insulation strengthening layer with cement stabilized macadam subgrade surface structure can provide references for the selection of high-speed railway subgrade structure in the seasonal frozen zone.

Key words: subgrade, seasonal frozen soil regions, high-speed railway, anti-frost heaving structure, frost heaving, mechanical property between layer

中图分类号: 

  • U 213.1
[1] 张晓磊, 冯世进, 李义成, 王雷, . 路基高架过渡段高铁运行引起的地表 振动现场试验研究[J]. 岩土力学, 2020, 41(S1): 187-194.
[2] 杨长卫, 童心豪, 王栋, 谭信荣, 郭雪岩, 曹礼聪, . 地震作用下有砟轨道路基动力响应 规律振动台试验[J]. 岩土力学, 2020, 41(7): 2215-2223.
[3] 陈仁朋, 王朋飞, 刘鹏, 程威, 康馨, 杨微, . 路基煤矸石填料土-水特征曲线试验研究[J]. 岩土力学, 2020, 41(2): 372-378.
[4] 艾希, 冷伍明, 徐方, 张期树, 翟斌, . 新型预应力路基水平附加应力计算的图表法[J]. 岩土力学, 2020, 41(1): 253-266.
[5] 王青志, 房建宏, 晁刚. 高温冻土地区高等级公路片块石路基降温效果分析[J]. 岩土力学, 2020, 41(1): 305-314.
[6] 王宏磊, 孙志忠, 刘永智, 武贵龙, . 青藏铁路含融化夹层路基热力响应监测分析[J]. 岩土力学, 2019, 40(7): 2815-2824.
[7] 徐 鹏, 蒋关鲁, 任世杰, 田鸿程, 王智猛, . 红层泥岩及其改良填料路基动力响应试验研究[J]. 岩土力学, 2019, 40(2): 678-683.
[8] 丁瑜, 陈晓斌, 张家生, 贾羽, . 风化红砂岩残积土路基瞬态饱和区动态水压力 特征试验研究[J]. 岩土力学, 2019, 40(12): 4740-4750.
[9] 冷伍明, 张期树, 徐方, 聂如松, 杨奇, 艾希, . 新型预应力路基坡面法向附加应力扩散规律分析[J]. 岩土力学, 2019, 40(10): 3987-4000.
[10] 王建军, 陈福全, 李大勇. 低填方加筋路基沉降的Kerr模型解[J]. 岩土力学, 2019, 40(1): 250-259.
[11] 王炳龙,梅 祯,肖军华. 土工格室补强路基整治路基病害的试验研究[J]. , 2018, 39(S1): 325-332.
[12] 杨 琪,张友谊,刘华强,秦 华,. 一种气泡轻质土路基受载-破坏模型试验[J]. , 2018, 39(9): 3121-3129.
[13] 陈福全,赖丰文,李大勇. 受空洞坍塌影响的加筋路基研究综述[J]. , 2018, 39(9): 3362-3376.
[14] 黎瀚文,张璐璐,冯世进,郑文棠,. 复杂大气环境作用下高铁路基水分迁移响应[J]. , 2018, 39(7): 2574-2582.
[15] 孟上九,李 想,孙义强,程有坤,. 季冻土路基永久变形现场监测与分析[J]. , 2018, 39(4): 1377-1385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!