岩土力学 ›› 2019, Vol. 40 ›› Issue (S1): 119-126.doi: 10.16285/j.rsm.2019.0263

• 基础理论与实验研究 • 上一篇    下一篇

软黏土中吸力式沉箱基础竖向抗拔承载 特性试验研究

戴国亮1, 2,朱文波1,郭晶1,龚维明1, 2,赵学亮1, 2   

  1. 1. 东南大学 土木工程学院,江苏 南京 211189;2. 东南大学 混凝土及预应力混凝土结构教育重点实验室,江苏 南京 211189
  • 收稿日期:2019-01-27 出版日期:2019-08-01 发布日期:2019-08-15
  • 作者简介:戴国亮,男,1975年生,博士,教授,长期从事地下结构工程方面的教学与研究工作
  • 基金资助:
    国家重点研发计划专项项目(No.2017YFC0703408);国家自然科学基金项目(No.51878160,No.51678145)。

Experiments on vertical uplift bearing capacity of suction caisson foundation in soft clay

DAI Guo-liang1, 2, ZHU Wen-bo1 , GUO Jing1, GONG Wei-ming1, 2, ZHAO Xue-liang1, 2   

  1. 1. School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, China; 2. Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, Jiangsu 211189, China
  • Received:2019-01-27 Online:2019-08-01 Published:2019-08-15
  • Supported by:
    This work was supported by the National Key R & D Program of China(2017YFC0703408) and the National Natural Science Foundation of China(51878160, 51678145).

摘要: 吸力式沉箱基础可以作为张力腿平台(TLP)的锚固基础,主要受上拔荷载作用,其抗拔破坏模式是分析吸力式沉箱基础抗拔承载力关键,目前对吸力式沉箱基础竖向抗拔承载机制研究尚不够深入。通过一系列室内模型试验,研究软黏土中吸力式沉箱基础抗拔承载特性,给出吸力式沉箱基础两种破坏模式,即顶部张力破坏模式和底部张力破坏模式。试验结果表明,顶部张力破坏模式时沉箱顶部负压与底部负压接近相等,承载力随沉箱顶部负压增大而增大,沉箱抗拔承载力由沉箱自重、内外摩擦力与沉箱顶部反力组成;当形成底部张力破坏模式时沉箱承载力随沉箱底部负压增大而增大,沉箱抗拔承载力由沉箱和土塞自重、外摩擦力以及底部反力组成;当达到极限荷载时沉箱顶部及底部负压均小于不排水剪切强度Su,沉箱顶部与底部反向承载力系数均小于1.0。最后提出考虑沉箱内顶部负压作用下吸力式沉箱基础抗拔承载力计算方法,揭示了软黏土中吸力式沉箱基础抗拔承载机制,为吸力式沉箱基础抗拔承载力分析以及工程设计提供参考。

关键词: 吸力式沉箱基础, 抗拔承载力, 软黏土, 破坏模式, 负压

Abstract: The suction caisson foundation can be used as the anchoring foundation of the tension leg platform(TLP), which is mainly affected by the uplifting load. The pullout failure mode is the key to analyze the uplift bearing capacity of the suction caisson foundation. But studies on the mechanism of the ultimate uplift bearing capacity are still few and not thorough enough. In this paper, the uplift bearing capacity of the suction caisson foundation are sutided based on by a series of laboratory model tests. Two uplift failure modes, including the top and bottom tension failure mode, are derived. The test results show that when the top tension failure mode occurs, the negative pressure at the top and bottom of soil plug is approximately equal. The bearing capacity increases with the increase in the negative pressure at the top of soil plug. In addition, the uplift bearing capacity of caisson is made up of its self-gravity, the frictional force of inside and outside wall and the tensile force at the top of caisson. When the bottom tension failure mode occurs, the bearing capacity increases with the increase in the negative pressure at the bottom of caisson. In this condition, the uplift bearing capacity of suction caisson foundation is made up of its self-gravity, soil plug gravity, the frictional force at outside wall and the tensile force at the bottom of caisson. When the load reaches the ultimate bearing capacity, the negative pressures both at the top and bottom of soil plug are less than the undrained shear strength Su and the reverse bearing capacity coefficients at the top and bottom of the caisson are both less than 1.0. Considering the top negative pressure in the caisson, the calculation method of the uplift bearing capacity of the suction caisson is proposed, and the uplift bearing mechanism of the suction caisson foundation in soft clay is revealed. These can provide a reference for the analysis of the uplift bearing capacity and engineering design of the suction caisson foundation.

Key words: suction caisson foundation, uplift bearing capacity, soft clay, failure mode, negative pressure

中图分类号: 

  • TU473
[1] 李超, 李涛, 荆国业, 肖玉华. 竖井掘进机撑靴井壁土体极限承载力研究[J]. 岩土力学, 2020, 41(S1): 227-236.
[2] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[3] 王钰轲, 万永帅, 方宏远, 曾长女, 石明生, 吴迪, . 圆形应力路径下软黏土的动力特性试验研究[J]. 岩土力学, 2020, 41(5): 1643-1652.
[4] 史永跃, 王奎华, 董天文, 马显春, 黄永威. 真空负压静力试桩方法关键技术试验研究[J]. 岩土力学, 2020, 41(5): 1699-1708.
[5] 任连伟, 曹辉, 孔纲强. 试剂注入配合比对化学电渗法处治软黏土 加固效应对比研究[J]. 岩土力学, 2020, 41(4): 1219-1226.
[6] 任宇晓, 闫玥, 付登锋. 浅层地基上管道轴向运动的阻力研究[J]. 岩土力学, 2020, 41(4): 1404-1411.
[7] 赵明华, 彭文哲, 杨超炜, 肖尧, 刘亚楠. 斜坡地基刚性桩水平承载力上限分析[J]. 岩土力学, 2020, 41(3): 727-735.
[8] 孟庆彬, 钱唯, 韩立军, 蔚立元, 王丛凯, 周星, . 极弱胶结岩体再生结构的形成机制 与力学特性试验研究[J]. 岩土力学, 2020, 41(3): 799-812.
[9] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
[10] 孙锐, 杨峰, 阳军生, 赵乙丁, 郑响凑, 罗静静, 姚捷, . 基于二阶锥规划与高阶单元的 自适应上限有限元研究[J]. 岩土力学, 2020, 41(2): 687-694.
[11] 王培涛, 黄正均, 任奋华, 章亮, 蔡美峰, . 基于3D打印的含复杂节理岩石直剪特性 及破坏机制研究[J]. 岩土力学, 2020, 41(1): 46-56.
[12] 孙红, 宋春雨, 滕慕薇, 葛修润. 加荷条件下软黏土的孔隙演化特征[J]. 岩土力学, 2020, 41(1): 141-146.
[13] 王钦科, 马建林, 陈文龙, 杨彦鑫, 胡中波, . 上覆土嵌岩扩底桩抗拔承载特性离心 模型试验及计算方法研究[J]. 岩土力学, 2019, 40(9): 3405-3415.
[14] 刘新荣, 邓志云, 刘永权, 刘树林, 路雨明, . 地震作用下水平层状岩质边坡累积损伤与 破坏模式研究[J]. 岩土力学, 2019, 40(7): 2507-2516.
[15] 张天军, 庞明坤, 蒋兴科, 彭文清, 纪翔, . 负压对抽采钻孔孔周煤体瓦斯渗流特性的影响[J]. 岩土力学, 2019, 40(7): 2517-2524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!